首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   8篇
  国内免费   1篇
  2022年   1篇
  2021年   3篇
  2015年   4篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1979年   4篇
  1976年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
15.
16.
Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are potent regulators of cellular processes including neuronal firing, synaptic transmission, cochlear hair cell tuning, insulin release, and smooth muscle tone. Their unique activation pathway relies on structurally distinct regulatory domains including one transmembrane voltage-sensing domain (VSD) and two intracellular high affinity Ca(2+)-sensing sites per subunit (located in the RCK1 and RCK2 domains). Four pairs of RCK1 and RCK2 domains form a Ca(2+)-sensing apparatus known as the "gating ring." The allosteric interplay between voltage- and Ca(2+)-sensing apparati is a fundamental mechanism of BK channel function. Using voltage-clamp fluorometry and UV photolysis of intracellular caged Ca(2+), we optically resolved VSD activation prompted by Ca(2+) binding to the gating ring. The sudden increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) induced a hyperpolarizing shift in the voltage dependence of both channel opening and VSD activation, reported by a fluorophore labeling position 202, located in the upper side of the S4 transmembrane segment. The neutralization of the Ca(2+) sensor located in the RCK2 domain abolished the effect of [Ca(2+)](i) increase on the VSD rearrangements. On the other hand, the mutation of RCK1 residues involved in Ca(2+) sensing did not prevent the effect of Ca(2+) release on the VSD, revealing a functionally distinct interaction between RCK1 and RCK2 and the VSD. A statistical-mechanical model quantifies the complex thermodynamics interplay between Ca(2+) association in two distinct sites, voltage sensor activation, and BK channel opening.  相似文献   
17.
The mRNAs of MT1 and MT2 melatonin receptors are present in cells from nonpregnant (NPM) and pregnant (PM) rat myometrium. To investigate the coupling of melatonin receptors to Gq- and Gi-type of heterotrimeric G proteins, we analyzed the activity of large-conductance Ca2+-activated K+ (BKCa) channels, the expression of which in the uterus is confined to smooth muscle cells. The melatonin receptor agonist 2-iodomelatonin induced a pertussis toxin (PTX)-insensitive increase in channel open probability that was blocked by the nonselective antagonist luzindole. The 2-iodomelatonin effect on channel open probability was suppressed by overexpression of the Gqalpha-inactivating protein RGS16 and the phospholipase C inhibitor U-73122. The activity of BKCa channels is differentially regulated by protein kinase A (PKA) in NPM and PM cells. Thus, the beta-adrenoceptor agonist isoprenaline inhibited the BKCa channel conducted whole-cell outward current (Iout) in NPM cells and enhanced Iout in PM cells. Additional application of 2-iodomelatonin antagonized the isoprenaline effect on Iout in NPM cells but enhanced Iout in PM cells. All 2-iodomelatonin effects on Iout were sensitive to PTX treatment and the PKA inhibitor H-89. We therefore conclude that melatonin activates both the PTX-insensitive Gq/phospholipase C/Ca2+ and the PTX-sensitive Gi/cAMP/PKA signaling pathway in rat myometrium.  相似文献   
18.
General anesthetics allosterically modulate the activity of neuronal gamma-aminobutyric acid, type A (GABAA), receptors. Previous mutational studies from our laboratory and others have shown that the regions in transmembrane domain 1 (M1) and pre-M1 of alpha and beta subunits in GABA receptors are essential for positive modulation of GABA binding and function by the intravenous (IV) general anesthetics. Mutation of beta2Gly-219 to Phe corresponded in rho nearly eliminated the modulatory effect of IV anesthetics in alpha1/beta2/gamma2S combination. However, the general anesthetics retained the ability to directly open the channel of mutant G219F, and the apparent affinity for GABA was increased, and desensitization rate was reduced. In this study, we made additional single mutations such as 219 Ser, Cys, Ile, Asp, Arg, Tyr, and Trp. The larger side chains of the replacement residues produced the greatest reduction in enhancement of GABA currents by IV anesthetics at clinical concentrations (Trp > Tyr = Phe > Arg > Asp > Ile > Cys > Ser = wild type). Compared with a 2-3-fold response in wild type, pentobarbital and propofol enhanced less than 0.5-fold; etomidate and alphaxalone modulation was reduced from more than 4- to 1-fold in G219F, G219Y, and G219W. A linear correlation was observed between the volume of the residue at position 219 and the loss of modulation. An identical correlation was found for the effect of modulation on left-shift in the GABA EC50 value; furthermore, the same rank order of residues, related to size, was found for reduction in the maximal direct channel-gating by pentobarbital (1 mm) and etomidate (100 mum) and for increased apparent affinity for direct gating by the IV anesthetics.  相似文献   
19.
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (tau = 318 +/- 34 micros at -180 mV) and a slower component (4.5 +/- 0.5 ms at -180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to -60) at which the channel open probability is negligible ( approximately 10-4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage-sensing charges of S4 move inward when the KAT1 channels open.  相似文献   
20.
The alpha3 fucosyltransferase, FucT-VII, is one of the key glycosyltransferases involved in the biosynthesis of the sialyl Lewis X (sLex) antigen on human leukocytes. The sialyl Lewis X antigen (NeuAcalpha(2-3)Galbeta(1-4)[Fucalpha(1-3)]GlcNAc-R) is an essential component of the recruitment of leukocytes to sites of inflammation, mediating the primary interaction between circulating leukocytes and activated endothelium. In order to characterize the enzymatic properties of the leukocyte alpha3 fucosyltransferase FucT-VII, the enzyme has been expressed in Trichoplusia ni insect cells. The enzyme is capable of synthesizing both sLexand sialyl-dimeric-Lexstructures in vitro , from 3'-sialyl-lacNAc and VIM-2 structures, respectively, with only low levels of fucose transfer observed to neutral or 3'-sulfated acceptors. Studies using fucosylated NeuAcalpha(2-3)-(Galbeta(1- 4)GlcNAc)3-Me acceptors demonstrate that FucT-VII is able to synthesize both di-fucosylated and tri-fucosylated structures from mono- fucosylated precursors, but preferentially fucosylates the distal GlcNAc within a polylactosamine chain. Furthermore, the rate of fucosylation of the internal GlcNAc residues is reduced once fucose has been added to the distal GlcNAc. These results indicate that FucT-VII is capable of generating complex selectin ligands, in vitro , however the order of fucose addition to the lactosamine chain affects the rate of selectin ligand synthesis.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号