首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   4篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   10篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1967年   1篇
  1962年   1篇
  1959年   2篇
  1954年   1篇
  1929年   1篇
排序方式: 共有167条查询结果,搜索用时 656 毫秒
71.
Cold acclimation of plants is a complex process involving a number of biochemical and physiological changes. The ability to cold acclimate is under genetic control. The development of freezing tolerance in woody plants is generally triggered by non-freezing low temperatures but can also be induced by mild drought or exogenous abscisic acid, as well as by short photoperiod. In nature, the extreme freezing tolerance of woody plants is achieved during sequential stages of cold acclimation the first of which is initiated by short photoperiods and non-freezing low temperatures, and the second by freezing temperatures. Although recent breakthroughs have increased our knowledge on the physiological molecular basis of freezing tolerance in herbaceous species, which acclimate primarily in response to non-freezing low temperatures, very little is known about cold acclimation of woody plants. This article attempts to review our current understanding of the physiological aspects that underline cold acclimation in woody plants.  相似文献   
72.
The aim of this study was to illustrate the influence of different levels of the fulcrum (the axis of sagittal rotation) on measured trunk flexion and extension strength and compare force and torque as a unit of measure. The isometric trunk strength was measured in 16 healthy female subjects. The dynamometer was kept at the shoulder level and the moment arm was lengthened step by step by moving the fulcrum caudally from the level of the posterior superior iliac spine to the level of the gluteal fold. The moment of force (torque) increased from 117.0 to 208.5 N · m in flexion and from 182.2 to 292.5 N · m in extension,P < 0.0001. An attempt to quantify this change was made. Paradoxically, the measured force remained at a constant level (in flexion) or slightly decreased (in extension). We concluded that torque as a measure of trunk flexion and extension strength is highly dependent on the level of the rotation axis and force appears to be less sensitive for variations with the height of the fulcrum. We would suggest that the observed increase in torque is physiological and reflects to what extent hip flexor or extensor muscles are recruited. The force, on the other hand, may better characterize a person's capability to perform functional tasks. Force and torque should strictly be distinguished from one another.  相似文献   
73.
Summary Samples of 17 plant species (one herb, dwarf shrubs and trees) were collected monthly throughout the winter 1976/77. Samples were frozen down to selected temperatures and hardiness was estimated by visual observations of oxidative browning and bud break. In most species hardiness rapidly increased from September to November and dehardening started in February–March. In six species (Betula pubescens Ehrh., Picea abies (L.) Karst., Salix caprea L., Sorbus aucuparia L., Vaccinium myrtillus L., V. vitis-idaea L.) hardening developed faster at the continental than at the coastal location. Differences in maximum hardiness between sampling locations were generally small and there were no real differences in dehardening of the plants between the locations. Both twigs and buds of Salix pentandra L. and Populus tremula L. survived liquid nitrogen in January–February.  相似文献   
74.
Effects of photoperiod and temperature on vegetative growth of seedling populations and clones of white clover ( Trifolium repens L.) originating from various latitudes (58°48'–69°54'N) and altitudes (up to 1100 m above sea level) were studied in a phytotron. Dry matter production, stolon elongation, petiole elongation and leaf lamina size were enhanced by long photoperiod. The requirement for long photoperiod increased with decreasing temperature. At 6°C the maximum growth was recorded under 24-h daylength. At 18°C already an increase in photoperiod from 12 to 15 h significantly enhanced growth, and maximum growth was obtained at 21-h photoperiod. The studied populations responded similarly to daylength, and the results did not indicate photoperiodic ecotypes in the material. The southernmost clones and populations generally had the highest dry matter production at all temperature treatments (6–18°C). Variation between clones within one location was, however, significant, and rapidly growing clones were found also in high-latitude locations. Dry matter production was poorly correlated with the morphological characters observed, but in some cases significant correlation with leaf lamina size was found.  相似文献   
75.
Scions of a southern (59° 40'N Lat.) and a northern (69° 39'N Lat.) ecotype of Salix pentandra L. were grafted on clonal rootstocks of the same ecotypes. Effects of photoperiod on elongation growth of the 4 combinations (south/south, south/north, north/south and north/north) were studied in a phytotron at 18° and 15°C. The photoperiodic response was primarily dependent on the ecotype of the scion, but this response was significantly modified by the rootstock. Cessation of apical growth was advanced by a northern clone and delayed by a southern clone as a rootstock. The results indicate that the critical photoperiod for cessation of apical growth could be slightly decreased by a northern and increased by a southern rootstock.  相似文献   
76.
77.
Regulation of light harvesting in response to changes in light intensity, CO2 and O2 concentration was studied in C4 species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO2 assimilation rates, O2 evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O2 evolution ( J\textO2 J_{{{\text{O}}_{2} }} , measured by analysis of chlorophyll fluorescence), net rates of O2 evolution and CO2 assimilation responded in parallel to changes in light and CO2 levels. The C4 subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O2 evolution (average value = 0.072 O2/quanta absorbed, ~14 quanta per O2 evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO2, ATP synthase proton conductivity (g H +) responded strongly to changes in electron flow, decreasing linearly with J\textO2 J_{{{\text{O}}_{2} }} , which was previously observed in C3 plants. It is proposed that g H + is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C4 plants is controlled by a decrease in g H +, which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.  相似文献   
78.
Seedlings of trees with a free growth pattern cease growth when night-lengths become shorter than a critical value, and this critical night-length (CNL) decreases with increasing latitude of origin. In northern populations, the light quality also appears to play an important role and a clinal variation in requirement for far-red (FR) light has been documented. In this study we dissected the light quality requirements for maintaining growth in different latitudinal populations of Norway spruce (Picea abies (L.) H. Karst.) using light emitting diodes for red (R), FR and blue (B) light, as 12 h day extension to provide 24 h photoperiod. At equal spectral photon flux, FR light was more effective than R light in maintaining growth, and the requirement of both R and FR increased with northern latitude of origin. One-to-one mixtures of R and FR light were more effective in maintaining growth than either FR or R light alone, indicating a possible interaction between R and FR light maintaining growth. Using the blue light as day extension could not prevent growth cessation in any of the populations, but delayed the bud set slightly in all populations. Our results suggest that phytochrome(s) are the primary photoreceptors in high irradiance responses maintaining growth in Norway spruce seedlings.  相似文献   
79.
The in vitro metabolism of carbosulfan, a widely used carbamate insecticide, by hepatic microsomes from human, rat, mouse, dog, rabbit, minipig, and monkey was studied. Altogether eight (8) phase I metabolites were detected by LC–MS; phase II metabolites were not found in human homogenates fortified with appropriate cofactors. The primary metabolic pathways were the initial oxidation of sulfur to carbosulfan sulfinamide (‘sulfur oxidation pathway’) and the cleavage of the nitrogen sulfur bond (N–S) to give carbofuran and dibutylamine (‘carbofuran pathway’). Carbofuran was further hydroxylated to 3-hydroxycarbofuran and/or 7-phenolcarbofuran, which were further oxidized to 3-ketocarbofuran or 3-hydroxy-7-phenolcarbofuran, respectively, and finally to 3-keto-7-phenolcarbofuran. 3-Hydroxycarbofuran was the main metabolite in all species, but otherwise there were some qualitative interspecies differences in carbofuran pathway metabolites. Only rabbit liver microsomes were able to metabolize carbofuran via hydroxylation to 7-phenolcarbofuran. Carbofuran was not detected in dog liver microsomes due to rapid further metabolism. In general, liver microsomes from all seven species produced more toxic products (carbofuran, 3-hydroxy-carbofuran, 3-ketocarbofuran) more rapidly than a detoxification product (carbosulfan sulfinamide). Differences in intrinsic hepatic clearances (CLint) between the lowest and highest species were moderate; 2-fold for the carbofuran pathway, 2.7-fold for carbosulfan sulfinamide and 6.2-fold for dibutylamine. Our studies, although restricted to in vitro metabolic data from human and animal hepatic preparations, provide valuable quantitative carbosulfan-specific data for risk assessment, which suggest that interspecies differences, for carbosulfan active chemical moiety, in toxicokinetics are within the standard applied factor for species extrapolation in toxicokinetics. These results will be valuable in further defining the risks associated with exposure to carbosulfan.  相似文献   
80.
Long-term fructose consumption has been shown to evoke leptin resistance, to elevate triglyceride levels and to induce insulin resistance and hepatic steatosis. Autophagy has been suggested to function in processes such as lipid storage in adipose tissue and inflammation in liver. Autophagy and the leptin system have also been suggested to regulate each other. This study aimed to identify the changes caused by fetal undernourishment and postnatal fructose diet in the gene expression of leptin, its receptors (LEPR-a, LEPR-b, LEPR-c, LEPR-e and LEPR-f) and autophagy genes in the white adipose tissue (WAT) and liver of adult male rats in order to clarify the mechanism behind the metabolic alterations. The data clearly revealed that the long-term postnatal fructose diet decreased leptin levels (p < 0.001), LEPR (p < 0.001), especially LEPR-b (p = 0.011) and LEPR-f (p = 0.005), as well as SOCS3 (p < 0.001), ACC (p = 0.006), ATG7 (p < 0.001), MAP1LC3β (p < 0.001) and LAMP2 (p = 0.004) mRNA expression in WAT. Furthermore, LEPR (p < 0.001), especially LEPR-b (p = 0.001) and LEPR-f (p < 0.001), ACC (p = 0.010), ATG7 (p = 0.024), MAP1LC3β (p = 0.003) and LAMP2 (p < 0.001) mRNA expression in the liver was increased in fructose-fed rats. In addition, the LEPR expression in liver and MAP1LC3β expression in WAT together explained 55.7 % of the variation in the plasma triglyceride levels of the rats (R adj. 2  = 0.557, p < 0.001). These results, together with increased p62 levels in WAT (p < 0.001), could indicate decreased adipose tissue lipid storing capacity as well as alterations in liver metabolism which may represent a plausible mechanism through which fructose consumption could disturb lipid metabolism and result in elevated triglyceride levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号