首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   14篇
  289篇
  2019年   2篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   13篇
  2005年   12篇
  2004年   9篇
  2003年   14篇
  2002年   14篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1986年   5篇
  1985年   4篇
  1982年   4篇
  1981年   8篇
  1980年   6篇
  1979年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
  1971年   6篇
  1970年   3篇
  1967年   3篇
  1965年   2篇
  1963年   1篇
  1962年   2篇
  1960年   2篇
  1959年   2篇
  1957年   3篇
  1954年   2篇
  1952年   1篇
  1929年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
81.
Oxalate decarboxylase (ODC) is a manganese-containing, multimeric enzyme of the cupin protein superfamily. ODC is one of the three enzymes identified to decompose oxalic acid and oxalate, and within ODC catalysis, oxalate is split into formate and CO2. This primarily intracellular enzyme is found in fungi and bacteria, and currently the best characterized enzyme is the Bacillus subtilis OxdC. Although the physiological role of ODC is yet unidentified, the feasibility of this enzyme in diverse biotechnological applications has been recognized for a long time. ODC could be exploited, e.g., in diagnostics, therapeutics, process industry, and agriculture. So far, the sources of ODC enzyme have been limited including only a few fungal and bacterial species. Thus, there is potential for identification and cloning of new ODC variants with diverse biochemical properties allowing e.g. more enzyme fitness to process applications. This review gives an insight to current knowledge on the biochemical characteristics of ODC, and the relevance of oxalate-converting enzymes in biotechnological applications. Particular emphasis is given to fungal enzymes and the inter-connection of ODC to fungal metabolism of oxalic acid.  相似文献   
82.
83.
Fungal laccases are attracting enzymes for sustainable valorization of biorefinery lignins. To improve the lignin oxidation capacity of two previously characterized laccase isoenzymes from the white-rot fungus Obba rivulosa, we mutated their substrate-binding site at T1. As a result, the pH optimum of the recombinantly produced laccase variant rOrLcc2-D206N shifted by three units towards neutral pH. O. rivulosa laccase variants with redox mediators oxidized both the dimeric lignin model compound and biorefinery poplar lignin. Significant structural changes, such as selective benzylic α-oxidation, were detected by nuclear magnetic resonance analysis, although no polymerization of lignin was observed by gel permeation chromatography. This suggests that especially rOrLcc2-D206N is a promising candidate for lignin-related applications.  相似文献   
84.
Thermoanaerobacter ethanolicus JW200 Fe(7) was grown in continuous culture, using xylose as the primary carbon source, with progressively lower concentrations of supplementary yeast extract. This enabled the comparison of metabolic flux to fermentation end-products under carbon-limited and carbon-sufficient (yeast extract-limited) conditions and the determination of process data under fully mass-balanced conditions. Under carbon-limitation, the specific ethanol-formation rate was described by q (p)=40.34 micro +3.74, the specific rate of substrate utilisation for maintenance was 0.31+/-0.02 g x g(-1) x h(-1) and the maximum cell yield on xylose, corrected for maintenance requirements, was 0.15+/-0.04 g x g(-1). Based on the product profiles, these corresponded to a maintenance coefficient of m(ATP)=4.1+/-0.5 mmol x g(-1) x h(-1) and a maximum cell yield of = 14.7+/-0.8 x g x mol(-1). Limitation by a component in yeast extract resulted in incomplete xylose utilisation, increased catabolic flux rates (primarily resulting in increased lactate production, due to limitations in the flux through the phosphoroclastic reaction), a reduction in cell yield = 10.0+/-1.0 g x mol(-1) and an increase in maintenance energy requirements of m(ATP)=7.95+/-0.7 mmol x g(-1). The latter was also reflected in a shift from ethanol to acetate production at lower growth rates. An analysis of ethanol and acetate tolerance indicated that any high-intensity process employing this strain would require a bioreactor design which incorporated continuous ethanol stripping.  相似文献   
85.
This review concerns basic research on cellulases and cellulose-specific carbohydrate-binding modules (CBMs). As a background, glycosyl hydrolases are also briefly reviewed. The nomenclature of cellulases and CBMs is discussed. The main cellulase-producing organisms and their cellulases are described. Synergy, enantioseparation, cellulases in plants, cellulosomes, cellulases and CBMs as analytical tools and cellulase-like enzymes are also briefly reviewed.  相似文献   
86.
Two rhododendron cultivars, 'Pohjola's Daughter' and 'Helsinki University', were grown at +15 and +24°C, each combined with a photoperiod of 14 h (short day, SD) or 20 h (long day, LD). After a 112-day growing season, they were subjected to a hardening regime of fortnightly decreasing temperature (+9, +5, +1 and −2°C) and a 12-h photoperiod, except that part of the plants grown in LD had LD also at +9 and +5°C. At −2°C, all plants were in darkness. Controlled freezing tests of the leaves were performed before each change in temperature. The injury was evaluated visually and by electrolyte leakage (EL) tests. The observations on the visual assessment were analysed with logit models, and the EL data with non-linear sigmoid functions. The visually scored 50% damage (VD50) correlated better with the EL tests than 10 or 90% damage. Photoperiod and temperature during the growing season affected the cold hardiness of both cultivars, but they differed in their responses. 'Pohjola's Daughter' benefited from SD as well as from high temperature, while 'Helsinki University' attained better hardiness at a cool growing season temperature and was less sensitive to photoperiod.  相似文献   
87.
The endoglucanase Cel5A from Trichoderma reesei and an endoglucanase from Aspergillus sp. (Novozym 476 from Novozyme A/S) were evaluated as probes for the surface properties of soft- and hardwood chemical pulp fibres. The hydrolysis time curves were in accordance with a two-phase degradation model described by a biexponential function. The kinetic parameters corresponding to the amount of fast and slow degraded parts of the substrate correlated to tensile index, relative bonded area and z-strength of the paper. All paper properties showing a correlation with enzyme kinetic parameters were related to fibre-fibre interactions. Fluorescence labelling of the reducing end groups in pulp fibres followed by enzyme treatment indicated that the fast substrate class corresponds to the population of "loose" cellulose chain ends not tightly associated with the bulk cellulose. The correlation between the parameters of enzyme kinetics and mechanical properties of the paper produced from the corresponding pulp found in this study should allow a rapid evaluation of the raw fibre material used in paper making process.  相似文献   
88.
Synopsis Several freshwater species use the Kyrönjoki River estuary as a spawning and nursery area. The main reasons for this seem to be the morphology of the estuary, the abundance of shelter provided by aquatic macrophytes, high food production and favourable temperature conditions. Acidification of the estuary due to drainage from acidic soils has made part of the estuary unsuitable for fish reproduction. In addition, year to year fluctuations in the acidity of the estuarine water have affected the reproductive success of several species. The severity of the effects of the acidification at the population level is determined by the spatial and temporal distribution of the larvae and juveniles.  相似文献   
89.
90.
Abscisic acid isolated from vegetative shoots of Salix pentandra L. has been identified by high performance liquid chromatography and combined gas chromatography-mass spectrometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号