首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   57篇
  807篇
  2024年   2篇
  2023年   2篇
  2022年   11篇
  2021年   22篇
  2020年   13篇
  2019年   7篇
  2018年   20篇
  2017年   20篇
  2016年   18篇
  2015年   33篇
  2014年   48篇
  2013年   62篇
  2012年   56篇
  2011年   54篇
  2010年   36篇
  2009年   25篇
  2008年   50篇
  2007年   38篇
  2006年   52篇
  2005年   41篇
  2004年   36篇
  2003年   26篇
  2002年   29篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1973年   2篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有807条查询结果,搜索用时 15 毫秒
21.
Summary 1. The amygdaloid complex is a key structure in mechanisms of fear and anxiety. Expression of the immediate-early gene c-fos has been reported in the central nucleus of the amygdala following various stressors, but the functional role of this phenomenon has remained unknown.2. c-fos expression was observed in the central nucleus when rats were subjected to a pharmacologically validated animal model of anxiety, the Vogel conflict test, but not after mere exposure to the test apparatus. Bilateral amygdala injection of a 15-mer phosphorothioate c-fos antisense oligodeoxynucleotide prior to testing blocked conflict-induced c-fos expression and had behavioral effects similar to those of established antianxiety drugs.3. Separate experiments determined that antisense treatment did not affect conflict behavior by acting on shock thresholds or drinking motivation.4. These findings provide evidence that neuronal activation and c-fos induction in the amygdala may be of importance for mechanisms of fear and anxiety.  相似文献   
22.
The regulation of the structural composition and complexity of the mycelium of arbuscular mycorrhizal (AM) fungi is not well understood due to their obligate biotrophic nature. The aim of this study was to investigate the structure of extraradical mycelium at high and low availability of carbon (C) to the roots and phosphorus (P) to the fungus. We used monoxenic cultures of the AM fungus Rhizophagus irregularis (formerly Glomus intraradices) with transformed carrot roots as the host in a cultivation system including a root-free compartment into which the extraradical mycelium could grow. We found that high C availability increased hyphal length and spore production and anastomosis formation within individual mycelia. High P availability increased the formation of branched absorbing structures and reduced spore production and the overall length of runner hyphae. The complexity of the mycelium, as indicated by its fractal dimensions, increased with both high C and P availability. The results indicate that low P availability induces a growth pattern that reflects foraging for both P and C. Low C availability to AM roots could still support the explorative development of the mycelium when P availability was low. These findings help us to better understand the development of AM fungi in ecosystems with high P input and/or when plants are subjected to shading, grazing or any management practice that reduces the photosynthetic ability of the plant.  相似文献   
23.
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of beta-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.  相似文献   
24.
Neural stem cells (NSCs) play an essential role in both the developing embryonic nervous system through to adulthood where the capacity for self-renewal may be important for normal function of the CNS, such as in learning, memory and response to injury. There has been much excitement about the possibility of transplantation of NSCs to replace damaged or lost neurones, or by recruitment of endogenous precursors. However, before the full potential of NSCs can be realized, it is essential to understand the physiological pathways that control their proliferation and differentiation, as well as the influence of extrinsic factors on these processes. In the present study we used the NSC line C17.2 and primary embryonic cortical NSCs (cNSCs) to investigate the effects of the environmental contaminant methylmercury (MeHg) on survival and differentiation of NSCs. The results show that NSCs, in particular cNSCs, are highly sensitive to MeHg. MeHg induced apoptosis in both models via Bax activation, cytochrome c translocation, and caspase and calpain activation. Remarkably, exposure to MeHg at concentrations comparable to the current developmental exposure (via cord blood) of the general population in many countries inhibited spontaneous neuronal differentiation of NSCs. Our studies also identified the intracellular pathway leading to MeHg-induced apoptosis, and indicate that NSCs are more sensitive than differentiated neurones or glia to MeHg-induced cytotoxicity. The observed effects of MeHg on NSC differentiation offer new perspectives for evaluating the biological significance of MeHg exposure at low levels.  相似文献   
25.
26.

Background

Inhibitors that are generated during thermochemical pretreatment and hydrolysis impair the performance of microorganisms during fermentation of lignocellulosic hydrolysates. In omitting costly detoxification steps, the fermentation process relies extensively on the performance of the fermenting microorganism. One attractive option of improving its performance and tolerance to microbial inhibitors is short-term adaptation during propagation. This study determined the influence of short-term adaptation on the performance of recombinant Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation (SSCF). The aim was to understand how short-term adaptation with lignocellulosic hydrolysate affects the cell mass yield of propagated yeast and performance in subsequent fermentation steps. The physiology of propagated yeast was examined with regard to viability, vitality, stress responses, and upregulation of relevant genes to identify any links between the beneficial traits that are promoted during adaptation and overall ethanol yields in co-fermentation.

Results

The presence of inhibitors during propagation significantly improved fermentation but lowered cell mass yield during propagation. Xylose utilization of adapted cultures was enhanced by increasing amounts of hydrolysate in the propagation. Ethanol yields improved by over 30 % with inhibitor concentrations that corresponded to ≥2.5 % water-insoluble solids (WIS) load during the propagation compared with the unadapted culture. Adaptation improved cell viability by >10 % and increased vitality by >20 %. Genes that conferred resistance against inhibitors were upregulated with increasing amounts of inhibitors during the propagation, but the adaptive response was not associated with improved ethanol yields in SSCF. The positive effects in SSCF were observed even with adaptation at inhibitor concentrations that corresponded to 2.5 % WIS. Higher amounts of hydrolysate in the propagation feed further improved the fermentation but increased the variability in fermentation outcomes and resulted in up to 20 % loss of cell mass yield.

Conclusions

Short-term adaptation during propagation improves the tolerance of inhibitor-resistant yeast strains to inhibitors in lignocellulosic hydrolysates and improves their ethanol yield in fermentation and xylose-fermenting capacity. A low amount of hydrolysate (corresponding to 2.5 % WIS) is optimal, whereas higher amounts decrease cell mass yield during propagation.
  相似文献   
27.
28.
Based on quinazoline, quinoxaline, and nitrobenzene scaffolds and on pharmacophoric features of VEGFR-2 inhibitors, 17 novel compounds were designed and synthesised. VEGFR-2 IC50 values ranged from 60.00 to 123.85 nM for the new derivatives compared to 54.00 nM for sorafenib. Compounds 15a, 15b, and 15d showed IC50 from 17.39 to 47.10 µM against human cancer cell lines; hepatocellular carcinoma (HepG2), prostate cancer (PC3), and breast cancer (MCF-7). Meanwhile, the first in terms of VEGFR-2 inhibition was compound 15d which came second with regard to antitumor assay with IC50 = 24.10, 40.90, and 33.40 µM against aforementioned cell lines, respectively. Furthermore, Compound 15d increased apoptosis rate of HepG2 from 1.20 to 12.46% as it significantly increased levels of Caspase-3, BAX, and P53 from 49.6274, 40.62, and 42.84 to 561.427, 395.04, and 415.027 pg/mL, respectively. Moreover, 15d showed IC50 of 253 and 381 nM against HER2 and FGFR, respectively.  相似文献   
29.
Summary A new gene for trimethoprim resistance, dhfrV, found in several plasmid isolates with different characteristics, was sequenced and found to correspond to a peptide of 157 amino acids showing 75% similarity with the previously characterized, drug resistant dihydrofolate reductase of type I. The sequenced surroundings of dhfrV in plasmid pLMO20, were found to be almost identical with genetic areas surrounding resistance genes in transposon Tn21 and in R plasmid R388. The trimethoprim resistance genes of pLMO20 and R388 and the spectinomycin resistance gene of Tn21 could be regarded as having been inserted, by recombination, into an evolutionary older structure containg the sulfonamide resistance gene, sulI. The latter gene was sequenced and found to correspond to a peptide of 279 amino acids and with a molecular weight of 30126 daltons. The inserted genes were found to be governed by a promoter situated in the highly conserved structure and also controlling expression of sulI. The insertion points of the different resistance genes were precisely defined, and at the 3 ends of the inserted genes inverted repeats allowing the formation of stem and loop structures were found. Similar structures were found at the 3 ends of the antibiotic resistance genes in Tn7, which could indicate similar recombination mechanisms to be effective in the evolutionary construction of all these different resistance elements.  相似文献   
30.
In fish, brood cycling parental males sometimes eat some orall of their eggs, a behavior termed filial cannibalism. Wetested predictions of filial cannibalism models related to thecost of parental care in the male sand goby, Pomatoschistusminutus, by increasing the parental effort (fanning expenditure)through reduced levels of dissolved oxygen to 39% in an experimentalgroup, whereas a control group had fully saturated water. Malesshowed both full-clutch cannibalism and partial-clutch cannibalismin both treatments. Giving the males one to three females tospawn with, we found that small clutches were completely eatenmore often than were larger ones, whereas partial-clutch cannibalismwas not affected by clutch size. Although treatment did notaffect filial cannibalism, it did affect a male's energy statesuch that males in the low oxygen treatment lost more body fat,indicating a greater fanning effort. This shows that males inthe low oxygen treatment allocated more energy to the presentbrood, potentially at the expense of future reproductive success.Our study strongly suggests that filial cannibalism in malesand gobies represents a strategic life-history decision asan investment in future reproductive success, and is not triggeredby a proximate need for food necessary for the male's own survival.Furthermore, males in the low oxygen treatment built nests withlarger entrances, and were less likely to rebuild their nestsafter destruction. Presumably, this makes fanning easier butthe nest more vulnerable to predators, suggesting a trade-offbetween fanning and nest defense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号