Phytohormones act as chemical messengers and, under a complex regulation, allow plants to sustain biotic and abiotic stresses. Thus, phytohormones are known for their regulatory role in plant growth and development. Heavy metals (HMs) play an important role in metabolism and have roles in plant growth and development as micronutrients. However, at a level above threshold, these HMs act as contaminants and pose a worldwide environmental threat. Thus, finding eco-friendly and economical deliverables to tackle this problem is a priority. In addition to physicochemical methods, exogenous application of phytohormones, i.e., auxins, cytokinins, and gibberellins, can positively influence the regulation of the ascorbate–glutathione cycle, transpiration rate, cell division, and the activities of nitrogen metabolism and assimilation, which improve plant growth activity. Brassinosteroids, ethylene and salicylic acid have been reported to enhance the level of the anti-oxidant system, decrease levels of ROS, lipid peroxidation and improve photosynthesis in plants, when applied exogenously under a HM effect. There is a crosstalk between phytohormones which is activated upon exogenous application. Research suggests that plants are primed by phytohormones for stress tolerance. Chemical priming has provided good results in plant physiology and stress adaptation, and phytohormone priming is underway. We have reviewed promising phytohormones, which can potentially confer enhanced tolerance when used exogenously. Exogenous application of phytohormones may increase plant performance under HM stress and can be used for agro-ecological benefits under environmental conditions with high HMs level.
The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge. 相似文献
A new class of antenna chromophores so called ‘tetrazolates’ have not been explored much for lanthanide luminescencent complexes. However, we have already published several articles considering pyridineoxide tetrazolates as sensitizer with lanthanide ions. Although this class of antenna attracted much less attention because of its poor photoluminescence quantum yields (tris‐pyridineoxide tetrazolate europium complex = 13% in solution) we tried and successfully achieved to improve the photoluminescence quantum yields for this particular antenna molecule by replacing coordinated water from the inner coordination sphere of europium ion by introducing phosphine oxides as additional chromophore. In the present article the two bis‐phosphine oxides attach two molecules of tris‐pyridineoxide tetrazolate europium(III) complex which leads to the improvement of the overall molar absorption coefficients as well as photo‐physical properties of the complexes. We found more than two‐fold increase (31% in solution) in photoluminescence quantum yield with one of the coordinated phosphine oxides comparing with that of tris‐pyridineoxide tetrazolate europium(III) complex. 相似文献
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster. 相似文献
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes. 相似文献
Methods to measure resistance to inhibition by organophosphorus toxicants (OP) for mutants of butyrylcholinesterase (EC 3.1.1.8; BChE) and acetylcholinesterase (EC 3.1.1.7; AChE) enzymes were devised. Wild-type cholinesterases were completely inhibited by 0.1 mM echothiophate or 0.001 mM diisopropylfluorophosphate, but human BChE mutants G117H, G117D, L286H, and W231H and snake AChE mutant HFQT retained activity. Tissues containing a mixture of cholinesterases could be assayed for amount of G117H BChE. For example, the serum of transgenic mice expressing human G117H BChE contained 0.5 microg/ml human G117H BChE, 2 microg/ml wild-type mouse BChE, and 0.06 microg/ml wild-type mouse AChE. The oligomeric structure of G117H BChE in the serum of transgenic mice was determined by nondenaturing gel electrophoresis followed by staining for butyrylthiocholine hydrolysis activity in the presence of 0.1 mM echothiophate. Greater than 95% of the human G117H BChE in transgenic mouse serum was a tetramer. To visualize the distribution of G117H BChE in tissues of transgenic mice, sections of small intestine were treated with echothiophate and then stained for BChE activity. Both wild-type and G117H BChE were in the epithelial cells of the villi. These assays can be used to identify OP-resistant cholinesterases in culture medium and in animal tissues. 相似文献
Electrophysiological and ultrastructural studies were performed on phrenic nerve-hemidiaphragm preparations isolated from
wild-type and acetylcholinesterase (AChE) knockout (KO) mice to determine the compensatory mechanisms manifested by the neuromuscular
junction to excess acetylcholine (ACh). The diaphragm was selected since it is the primary muscle of respiration, and it must
adapt to allow for survival of the organism in the absence of AChE. Nerve-elicited muscle contractions, miniature endplate
potentials (MEPPs) and evoked endplate potentials (EPPs) were recorded by conventional electrophysiological techniques from
phrenic nerve-hemidiaphragm preparations isolated from 1.5- to 2-month-old wild-type (AChE+/+) or AChE KO (AChE−/−) mice. These recordings were chosen to provide a comprehensive assessment of functional alterations of the diaphragm muscle
resulting from the absence of AChE. Tension measurements from AChE−/− mice revealed that the amplitude of twitch tensions was potentiated, but tetanic tensions underwent a use-dependent decline
at frequencies below 70 Hz and above 100 Hz. MEPPs recorded from hemidiaphragms of AChE−/− mice showed a reduction in frequency and a prolongation in decay (37%) but no change in amplitude compared to values observed
in age-matched wild-type littermates. In contrast, MEPPs recorded from hemidiaphragms of wild-type mice that were exposed
for 30 min to the selective AChE inhibitor 5-bis(4-allyldimethyl-ammoniumphenyl)pentane-3-one (BW284C51) exhibited a pronounced
increase in amplitude (42%) and a more marked prolongation in decay (76%). The difference between MEPP amplitudes and decays
in AChE−/− hemidiaphragms and in wild-type hemidiaphragms treated with BW284C51 represents effective adaptation by the former to a high
ACh environment. Electron microscopic examination revealed that diaphragm muscles of AChE−/− mice had smaller nerve terminals and diminished pre- and post-synaptic surface contacts relative to neuromuscular junctions
of AChE+/+ mice. The morphological changes are suggested to account, in part, for the ability of muscle from AChE−/− mice to function in the complete absence of AChE. 相似文献
We previously showed that agmatine stimulated hepatic ureagenesis. In this study, we sought to determine whether the action of agmatine is mediated via cAMP signaling. A pilot experiment demonstrated that the phosphodiesterase inhibitor, 3-isobutylmethylxanthine (IBMX), inhibited urea synthesis albeit increased [cAMP]. Thus, we hypothesized that IBMX inhibits hepatic urea synthesis independent of [cAMP]. We further theorized that agmatine would negate the IBMX action and improve ureagenesis. Experiments were carried out with isolated mitochondria and (15)NH(4)Cl to trace [(15)N]citrulline production or [5-(15)N]glutamine and a rat liver perfusion system to trace ureagenesis. The results demonstrate that IBMX induced the following: (i) inhibition of the mitochondrial respiratory chain and diminished O(2) consumption during liver perfusion; (ii) depletion of the phosphorylation potential and overall hepatic energetic capacity; (iii) inhibition of [(15)N]citrulline synthesis; and (iv) inhibition of urea output in liver perfusion with little effect on [N-acetylglutamate]. The results indicate that IBMX directly and specifically inhibited complex I of the respiratory chain and carbamoyl-phosphate synthase-I (CPS-I), with an EC(50) about 0.6 mm despite a significant elevation of hepatic [cAMP]. Perfusion of agmatine with IBMX stimulated O(2) consumption, restored hepatic phosphorylation potential, and significantly stimulated ureagenesis. The action of agmatine may signify a cascade effect initiated by increased oxidative phosphorylation and greater ATP synthesis. In addition, agmatine may prevent IBMX from binding to one or more active site(s) of CPS-I and thus protect against inhibition of CPS-I. Together, the data may suggest a new experimental application of IBMX in studies of CPS-I malfunction and the use of agmatine as intervention therapy. 相似文献