首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   27篇
  国内免费   4篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   29篇
  2020年   8篇
  2019年   20篇
  2018年   21篇
  2017年   15篇
  2016年   15篇
  2015年   24篇
  2014年   33篇
  2013年   37篇
  2012年   31篇
  2011年   49篇
  2010年   28篇
  2009年   15篇
  2008年   43篇
  2007年   35篇
  2006年   33篇
  2005年   29篇
  2004年   20篇
  2003年   21篇
  2002年   24篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有586条查询结果,搜索用时 46 毫秒
51.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   
52.
A mutation linked to autistic spectrum disorders encodes an Arg to Cys replacement in the C-terminal portion of the extracellular domain of neuroligin-3. The solvent-exposed Cys causes virtually complete retention of the protein in the endoplasmic reticulum when the protein is expressed in transfected cells. An identical Cys substitution was reported for butyrylcholinesterase through genotyping patients with post-succinylcholine apnea. Neuroligin, butyrylcholinesterase, and acetylcholinesterase are members of the alpha,beta-hydrolase fold family of proteins sharing sequence similarity and common tertiary structures. Although these proteins have distinct oligomeric assemblies and cellular dispositions, homologous Arg residues in neuroligin-3 (Arg-451), in butyrylcholinesterase (Arg-386), and in acetylcholinesterase (Arg-395) are conserved in all studied mammalian species. To examine whether an homologous Arg to Cys mutation affects related proteins similarly despite their differing capacities to oligomerize, we inserted homologous mutations in the acetylcholinesterase and butyrylcholinesterase cDNAs. Using confocal fluorescence microscopy and analysis of oligosaccharide processing, we find that the homologous Arg to Cys mutation also results in endoplasmic reticulum retention of the two cholinesterases. Small quantities of mutated acetylcholinesterase exported from the cell retain activity but show a greater K(m), a much smaller k(cat), and altered substrate inhibition. The nascent proteins associate with chaperones during processing, but the mutation presumably restricts processing through the endoplasmic reticulum and Golgi apparatus, because of local protein misfolding and inability to oligomerize. The mutation may alter the capacity of these proteins to dissociate from their chaperone prior to oligomerization and processing for export.  相似文献   
53.
An insertion/deletion polymorphism (Ind2) in the Brassica nigra CONSTANS LIKE 1 (Bni COL1) gene was previously found to be associated with variation in flowering time. In the present study we examine the inter-specific divergence of COL1 in the family Brassicaceae. Analysis of codon substitution models did not reveal evidence of positive Darwinian selection, but comparisons of the COL1 gene in different species revealed a surprising number of indels. A total of 24 indels were found in the 650 bp of the middle variable region of the gene. This high number of indels could reflect a lack of constraint on length of this region of the protein, or the effect of positive selection. The number of indels was close to that expected in non-coding DNA, but the indels were longer in COL1 than those observed in non-coding regions. Reconstruction of indel evolution indicated that most indels resulted from deletions rather than insertions. The Ind2 indel that has shown association with flowering time in Brassica nigra exhibited a remarkable distribution in the Brassicaceae family, indicating that the polymorphism may have persisted more than ten million years. Considering presumed historic populations sizes of Brassicaceae species, such a long persistence time seems unlikely for a neutral polymorphism.  相似文献   
54.
Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.  相似文献   
55.
56.
BChE (butyrylcholinesterase) protects the cholinergic nervous system from organophosphorus nerve agents by scavenging these toxins. Recombinant human BChE produced from transgenic goat to treat nerve agent intoxication is currently under development. The therapeutic potential of BChE relies on its ability to stay in the circulation for a prolonged period, which in turn depends on maintaining tetrameric quaternary configuration. Native human plasma BChE consists of 98% tetramers and has a half-life (t((1/2))) of 11-14 days. BChE in the neuromuscular junctions and the central nervous system is anchored to membranes through interactions with ColQ (AChE-associated collagen tail protein) and PRiMA (proline-rich membrane anchor) proteins containing proline-rich domains. BChE prepared in cell culture is primarily monomeric, unless expressed in the presence of proline-rich peptides. We hypothesized that a poly-proline peptide is an intrinsic component of soluble plasma BChE tetramers, just as it is for membrane-bound BChE. We found that a series of proline-rich peptides was released from denatured human and horse plasma BChE. Eight peptides, with masses from 2072 to 2878 Da, were purified by HPLC and sequenced by electrospray ionization tandem MS and Edman degradation. All peptides derived from the same proline-rich core sequence PSPPLPPPPPPPPPPPPPPPPPPPPLP (mass 2663 Da) but varied in length at their N- and C-termini. The source of these peptides was identified through database searching as RAPH1 [Ras-associated and PH domains (pleckstrin homology domains)-containing protein 1; lamellipodin, gi:82581557]. A proline-rich peptide of 17 amino acids derived from lamellipodin drove the assembly of human BChE secreted from CHO (Chinese-hamster ovary) cells into tetramers. We propose that the proline-rich peptides organize the 4 subunits of BChE into a 340 kDa tetramer, by interacting with the C-terminal BChE tetramerization domain.  相似文献   
57.
Liposomal formulations of dinuclear cluster rhenium (Re) compounds were used in biochemical trials. Interaction of liposomal forms of some Re compounds with red blood cells in experiments in vitro showed strong cell-stabilizing properties. In the models of tumor growth and hemolytic anemia in vivo, liposomal forms had better therapeutic effects in comparison with their solutions. The process of formation of liposomes of cluster Re compounds with different organic ligands was investigated by the method of electronic absorption spectra and mechanism of their interactions with lipids is proposed. Encapsulation of cluster Re compounds to lipid coating may have activation significance for the quadruple Re-Re bond.  相似文献   
58.
We previously showed that agmatine stimulated hepatic ureagenesis. In this study, we sought to determine whether the action of agmatine is mediated via cAMP signaling. A pilot experiment demonstrated that the phosphodiesterase inhibitor, 3-isobutylmethylxanthine (IBMX), inhibited urea synthesis albeit increased [cAMP]. Thus, we hypothesized that IBMX inhibits hepatic urea synthesis independent of [cAMP]. We further theorized that agmatine would negate the IBMX action and improve ureagenesis. Experiments were carried out with isolated mitochondria and (15)NH(4)Cl to trace [(15)N]citrulline production or [5-(15)N]glutamine and a rat liver perfusion system to trace ureagenesis. The results demonstrate that IBMX induced the following: (i) inhibition of the mitochondrial respiratory chain and diminished O(2) consumption during liver perfusion; (ii) depletion of the phosphorylation potential and overall hepatic energetic capacity; (iii) inhibition of [(15)N]citrulline synthesis; and (iv) inhibition of urea output in liver perfusion with little effect on [N-acetylglutamate]. The results indicate that IBMX directly and specifically inhibited complex I of the respiratory chain and carbamoyl-phosphate synthase-I (CPS-I), with an EC(50) about 0.6 mm despite a significant elevation of hepatic [cAMP]. Perfusion of agmatine with IBMX stimulated O(2) consumption, restored hepatic phosphorylation potential, and significantly stimulated ureagenesis. The action of agmatine may signify a cascade effect initiated by increased oxidative phosphorylation and greater ATP synthesis. In addition, agmatine may prevent IBMX from binding to one or more active site(s) of CPS-I and thus protect against inhibition of CPS-I. Together, the data may suggest a new experimental application of IBMX in studies of CPS-I malfunction and the use of agmatine as intervention therapy.  相似文献   
59.
Butyrylcholinesterase (BChE) inactivates the appetite stimulating hormone octanoyl-ghrelin. The hypothesis was tested that BChE−/− mice would have abnormally high body weight and high levels of octanoyl-ghrelin. It was found that BChE−/− mice fed a standard 5% fat diet had normal body weight. However, BChE−/− mice fed a diet containing 11% fat became obese. Their obesity was not explained by increased levels of octanoyl-ghrelin, or by increased caloric intake, or by decreased exercise. Instead, a role for BChE in fat utilization was suggested.  相似文献   
60.
Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5 mm p-nitrophenyl acetate for 5 min to 2 weeks, or with 10 mm p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mm p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mm p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with beta-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 degrees C was 61 +/- 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号