首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   27篇
  国内免费   4篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   29篇
  2020年   8篇
  2019年   20篇
  2018年   21篇
  2017年   15篇
  2016年   15篇
  2015年   24篇
  2014年   33篇
  2013年   37篇
  2012年   31篇
  2011年   49篇
  2010年   28篇
  2009年   15篇
  2008年   43篇
  2007年   35篇
  2006年   33篇
  2005年   29篇
  2004年   20篇
  2003年   21篇
  2002年   24篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有586条查询结果,搜索用时 609 毫秒
11.
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.  相似文献   
12.
Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.  相似文献   
13.
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.  相似文献   
14.
The synthesis of sulfenimines and sulfinimines has been carried out with 10‐hydroxyisocamphylthiol. The configuration of the compounds has been deduced by methods of NMR, DFT calculations and X‐ray diffraction analysis. The cytotoxic, antioxidant and membrane‐protective activity of the synthesized compounds as well as of the previously obtained sulfenimines and sulfinimines based on 4‐caranethiol have been determined.  相似文献   
15.
World Journal of Microbiology and Biotechnology - Derived from RNA, 5?-ribonucleotides, especially Inosine-5?-monophosphate (IMP) and guanosine-5?-monophosphate (GMP), can enhance...  相似文献   
16.
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.  相似文献   
17.
Bacterial L-asparaginases catalyzing hydrolysis of L-asparagine to L-aspartate and ammonia, are used in medical practice for treatment of acute lymphoblastic leukemia. The long-term therapy with these preparations is accompanied by a number of side effects, which are attributed to glutaminase activity of L-asparaginase. Substrate specificity and activity of L-asparaginases are directly associated with the oligomerization process of this enzyme, which is active only as the tetramer because its active sites are located in the contact areas between monomers. The present work is devoted to homology modeling of spatial structure of L-asparaginase from Erwinia carotovora, the comparative molecular-graphic analysis of subunit interfaces, and the development of a new experimental approach for studies of enzyme oligomerization. L-Asparaginase was immobilized on a surface of CM5 optical chip of biosensor Biacore 3000, which is based on the surface plasmon resonance technology. The dissociation process of enzyme tetrameric complexes up to monomers and subsequent oligomerization process have been registered.  相似文献   
18.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   
19.
Phytohormone Priming: Regulator for Heavy Metal Stress in Plants   总被引:1,自引:0,他引:1  

Phytohormones act as chemical messengers and, under a complex regulation, allow plants to sustain biotic and abiotic stresses. Thus, phytohormones are known for their regulatory role in plant growth and development. Heavy metals (HMs) play an important role in metabolism and have roles in plant growth and development as micronutrients. However, at a level above threshold, these HMs act as contaminants and pose a worldwide environmental threat. Thus, finding eco-friendly and economical deliverables to tackle this problem is a priority. In addition to physicochemical methods, exogenous application of phytohormones, i.e., auxins, cytokinins, and gibberellins, can positively influence the regulation of the ascorbate–glutathione cycle, transpiration rate, cell division, and the activities of nitrogen metabolism and assimilation, which improve plant growth activity. Brassinosteroids, ethylene and salicylic acid have been reported to enhance the level of the anti-oxidant system, decrease levels of ROS, lipid peroxidation and improve photosynthesis in plants, when applied exogenously under a HM effect. There is a crosstalk between phytohormones which is activated upon exogenous application. Research suggests that plants are primed by phytohormones for stress tolerance. Chemical priming has provided good results in plant physiology and stress adaptation, and phytohormone priming is underway. We have reviewed promising phytohormones, which can potentially confer enhanced tolerance when used exogenously. Exogenous application of phytohormones may increase plant performance under HM stress and can be used for agro-ecological benefits under environmental conditions with high HMs level.

  相似文献   
20.
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near‐infrared fluorescent proteins with enhanced intracellular brightness. The developed near‐infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near‐infrared fluorescent proteins enabled crosstalk‐free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual‐color near‐infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号