首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   27篇
  国内免费   4篇
  571篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   29篇
  2020年   8篇
  2019年   20篇
  2018年   21篇
  2017年   14篇
  2016年   13篇
  2015年   24篇
  2014年   31篇
  2013年   36篇
  2012年   30篇
  2011年   48篇
  2010年   26篇
  2009年   14篇
  2008年   43篇
  2007年   32篇
  2006年   33篇
  2005年   29篇
  2004年   20篇
  2003年   19篇
  2002年   25篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有571条查询结果,搜索用时 0 毫秒
71.
Heavy metal (HMs) contamination is widespread globally due to anthropogenic, technogenic, and geogenic activities. The HMs exposure could lead to multiple toxic effects in plants by inducing reactive oxygen species (ROS), which inhibit most cellular processes at various levels of metabolism. ROS being highly unstable could play dual role (1) damaging cellular components and (2) act as an important secondary messenger for inducing plant defense system. Cells are equipped with enzymatic and non-enzymatic defense mechanisms to counteract this damage. Some are constitutive and others that are activated only when a stress-specific signal is perceived. Enzymatic scavengers of ROS include superoxide dismutase, catalase, glutathione reductase, and peroxidase, while non-enzymatic antioxidants are glutathione, ascorbic acid, α-tocopherol, flavonoids, anthocyanins, carotenoids, and organic acids. The intracellular and extracellular chelation mechanisms of HMs are associated with organic acids such as citric, malic and oxalic acid, etc. The important mechanism of detoxification includes metal complexation with glutathione, amino acids, synthesis of phytochelatins and sequestration into the vacuoles. Excessive stresses induce a cascade, MAPK (mitogen-activated protein kinase) pathway and synthesis of metal-detoxifying ligands. Metal detoxification through MAPK cascade and synthesis of metal-detoxifying ligands will be of considerable interest in the field of plant biotechnology. Further, the photoprotective roles of pigments of xanthophylls cycle under HMs stress were also discussed.  相似文献   
72.
Archaeal and eukaryotic cytosols contain group II chaperonins, which have a double-barrel structure and fold proteins inside a cavity in an ATP-dependent manner. The most complex of the chaperonins, the eukaryotic TCP-1 ring complex (TRiC), has eight different subunits, chaperone containing TCP-1 (CCT1–8), that are arranged so that there is one of each subunit per ring. Aspects of the structure and function of the bovine and yeast TRiC have been characterized, but studies of human TRiC have been limited. We have isolated and purified endogenous human TRiC from HeLa suspension cells. This purified human TRiC contained all eight CCT subunits organized into double-barrel rings, consistent with what has been found for bovine and yeast TRiC. The purified human TRiC is active as demonstrated by the luciferase refolding assay. As a more stringent test, the ability of human TRiC to suppress the aggregation of human γD-crystallin was examined. In addition to suppressing off-pathway aggregation, TRiC was able to assist the refolding of the crystallin molecules, an activity not found with the lens chaperone, α-crystallin. Additionally, we show that human TRiC from HeLa cell lysate is associated with the heat shock protein 70 and heat shock protein 90 chaperones. Purification of human endogenous TRiC from HeLa cells will enable further characterization of this key chaperonin, required for the reproduction of all human cells.  相似文献   
73.
Methods to measure resistance to inhibition by organophosphorus toxicants (OP) for mutants of butyrylcholinesterase (EC 3.1.1.8; BChE) and acetylcholinesterase (EC 3.1.1.7; AChE) enzymes were devised. Wild-type cholinesterases were completely inhibited by 0.1 mM echothiophate or 0.001 mM diisopropylfluorophosphate, but human BChE mutants G117H, G117D, L286H, and W231H and snake AChE mutant HFQT retained activity. Tissues containing a mixture of cholinesterases could be assayed for amount of G117H BChE. For example, the serum of transgenic mice expressing human G117H BChE contained 0.5 microg/ml human G117H BChE, 2 microg/ml wild-type mouse BChE, and 0.06 microg/ml wild-type mouse AChE. The oligomeric structure of G117H BChE in the serum of transgenic mice was determined by nondenaturing gel electrophoresis followed by staining for butyrylthiocholine hydrolysis activity in the presence of 0.1 mM echothiophate. Greater than 95% of the human G117H BChE in transgenic mouse serum was a tetramer. To visualize the distribution of G117H BChE in tissues of transgenic mice, sections of small intestine were treated with echothiophate and then stained for BChE activity. Both wild-type and G117H BChE were in the epithelial cells of the villi. These assays can be used to identify OP-resistant cholinesterases in culture medium and in animal tissues.  相似文献   
74.
Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.  相似文献   
75.
To understand normal function of memory studying models of pathological memory decline is essential. The most common form of dementia leading to memory decline is Alzheimer’s disease (AD), which is characterized by the presence of neurofibrillary tangles and amyloid plaques in the affected brain regions. Altered production of amyloid β (Aβ) through sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases seems to be a central event in the molecular pathogenesis of the disease. Thus, the study of the complex interplay of proteins that are involved in or modify Aβ production is very important to gain insight into the pathogenesis of AD. Here, we describe the use of Fluorescence lifetime imaging microscopy (FLIM), a Fluorescence resonance energy transfer (FRET)-based method, to visualize protein–protein-interaction in intact cells, which has proven to be a valuable method in AD research.  相似文献   
76.
The complex interplay between cellular signaling and metabolism in eukaryotic cells just start to emerge. Coenzyme A (CoA) and its derivatives play a key role in cell metabolism and also participate in regulatory processes. CoA Synthase (CoASy) is a mitochondria-associated enzyme which mediates two final stages of de novo CoA biosynthesis. Here, we report that CoASy is involved in signaling events in the cell and forms a functional complex with p85αPI3K in vivo. Importantly, observed interaction of endogenous CoASy and p85αPI3K is regulated in a growth factor dependent manner. Surprisingly, both catalytic p110α and regulatory p85α subunits of PI3K were detected in mitochondrial fraction where mitochondria-localized p85αPI3K was found in complex with CoASy. Unexpectedly, significant changes of PI3K signaling pathway activity were observed in experiments with siRNA-mediated CoASy knockdown pointing on the role of CoA biosynthetic pathway in signal transduction.  相似文献   
77.
Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.  相似文献   
78.
Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.  相似文献   
79.
80.
Carbon and oxygen stable isotope records were compared for Jurassic/Cretaceous (J/K) boundary sections located in the Tethyan Realm (Brodno, Western Slovakia, and Puerto Escaño, Southern Spain; bulk limestones), and the Boreal Realm (Nordvik Peninsula, Northern Siberia, belemnites). Since a detailed biostratigraphic correlation of these Tethyan and Boreal sections is impossible due to different faunal assemblages, correlation of the isotope records was based on paleomagnetic data. This novel approach can improve our understanding of the synchroneity of individual isotope excursions in sections where detailed biostratigraphic correlation is impossible. No significant excursions in either the carbon or oxygen isotope records to be used for future Boreal/Tethyan correlations were found around the J/K boundary (the upper Tithonian and lower Berriasian; magnetozones M20n to M18n) in the studied sections. At the Nordvik section, where a much longer section (middle Oxfordian–basal Boreal Berriasian) was documented, the transition from the middle Oxfordian to the Kimmeridgian and further to the Volgian is characterized by a decrease in belemnite δ18O values (from δ18O values up to + 1.6‰ vs. V-PDB in the Oxfordian to values between + 0.3 and ? 0.8‰ in the late Volgian and earliest Boreal Berriasian). This trend, which has previously been reported from the Russian Platform and Tethyan Realm sections, corresponds either to gradual warming or a decrease in seawater δ18O. Supposing that the oxygen isotope compositions of seawater in the Arctic/Boreal and Tethyan Realms were similar, then the differences between oxygen isotope datasets for these records indicate differences in temperature. The Boreal/Tethyan temperature difference of 7–9 °C in the middle and late Oxfordian decreases towards the J/K boundary, indicating a significant decrease in latitudinal climatic gradients during the Late Jurassic. Two positive carbon isotope excursions recorded for the middle Oxfordian and upper Kimmeridgian in the Nordvik section can be correlated with a similar excursion described earlier for the Russian Platform. Minor influence of biofractionation at the carbon isotopes, and the influence of migration of belemnites to deeper, slightly cooler water at the oxygen isotopes, cannot be excluded for the obtained belemnite data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号