首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1410篇
  免费   118篇
  国内免费   2篇
  2022年   7篇
  2021年   16篇
  2020年   14篇
  2019年   8篇
  2018年   17篇
  2017年   23篇
  2016年   33篇
  2015年   44篇
  2014年   41篇
  2013年   74篇
  2012年   85篇
  2011年   69篇
  2010年   41篇
  2009年   49篇
  2008年   61篇
  2007年   78篇
  2006年   61篇
  2005年   53篇
  2004年   67篇
  2003年   59篇
  2002年   48篇
  2001年   46篇
  2000年   56篇
  1999年   40篇
  1998年   19篇
  1997年   14篇
  1996年   16篇
  1995年   15篇
  1994年   6篇
  1992年   21篇
  1991年   32篇
  1990年   27篇
  1989年   27篇
  1988年   22篇
  1987年   22篇
  1986年   15篇
  1985年   19篇
  1984年   19篇
  1983年   17篇
  1982年   18篇
  1981年   24篇
  1978年   10篇
  1977年   7篇
  1976年   7篇
  1975年   9篇
  1974年   6篇
  1973年   8篇
  1972年   15篇
  1971年   5篇
  1967年   4篇
排序方式: 共有1530条查询结果,搜索用时 125 毫秒
81.
With power conversion efficiencies now exceeding 25%, hybrid perovskite solar cells require deeper understanding of defects and processing to further approach the Shockley‐Queisser limit. One approach for processing enhancement and defect reduction involves additive engineering—, e.g., addition of MASCN (MA = methylammonium) and excess PbI2 have been shown to modify film grain structure and improve performance. However, the underlying impact of these additives on transport and recombination properties remains to be fully elucidated. In this study, a newly developed carrier‐resolved photo‐Hall (CRPH) characterization technique is used that gives access to both majority and minority carrier properties within the same sample and over a wide range of illumination conditions. CRPH measurements on n‐type MAPbI3 films reveal an order of magnitude increase in carrier recombination lifetime and electron density for 5% excess PbI2 added to the precursor solution, with little change noted in electron and hole mobility values. Grain size variation (120–2100 nm) and MASCN addition induce no significant change in carrier‐related parameters considered, highlighting the benign nature of the grain boundaries and that excess PbI2 must predominantly passivate bulk defects rather than defects situated at grain boundaries. This study offers a unique picture of additive impact on MAPbI3 optoelectronic properties as elucidated by the new CRPH approach.  相似文献   
82.
To extend life expectancy and ensure healthy aging, it is crucial to prevent and minimize age‐induced skeletal muscle atrophy, also known as sarcopenia. However, the disease's molecular mechanism remains unclear. The age‐related Wnt/β‐catenin signaling pathway has been recently shown to be activated by the (pro)renin receptor ((P)RR). We report here that (P)RR expression was increased in the atrophied skeletal muscles of aged mice and humans. Therefore, we developed a gain‐of‐function model of age‐related sarcopenia via transgenic expression of (P)RR under control of the CAG promoter. Consistent with our hypothesis, (P)RR‐Tg mice died early and exhibited muscle atrophy with histological features of sarcopenia. Moreover, Wnt/β‐catenin signaling was activated and the regenerative capacity of muscle progenitor cells after cardiotoxin injury was impaired due to cell fusion failure in (P)RR‐Tg mice. In vitro forced expression of (P)RR protein in C2C12 myoblast cells suppressed myotube formation by activating Wnt/β‐catenin signaling. Administration of Dickkopf‐related protein 1, an inhibitor of Wnt/β‐catenin signaling, and anti‐(P)RR neutralizing antibody, which inhibits binding of (P)RR to the Wnt receptor, significantly improved sarcopenia in (P)RR‐Tg mice. Furthermore, the use of anti‐(P)RR neutralizing antibodies significantly improved the regenerative ability of skeletal muscle in aged mice. Finally, we show that Yes‐associated protein (YAP) signaling, which is coordinately regulated by Wnt/β‐catenin, contributed to the development of (P)RR‐induced sarcopenia. The present study demonstrates the use of (P)RR‐Tg mice as a novel sarcopenia model, and shows that (P)RR‐Wnt‐YAP signaling plays a pivotal role in the pathogenesis of this disease.  相似文献   
83.
Extremophiles - The stability of dimeric cytochrome c′ from a thermophile, as compared with that of a homologous mesophilic counterpart, is attributed to strengthened interactions around the...  相似文献   
84.
We previously demonstrated that hDREF, a human homologue of Drosophila DNA replication-related element binding factor (dDREF), is a DNA-binding protein predominantly distributed with granular structures in the nucleus. Here, glutathione S-transferase pulldown and chemical cross-linking assays showed that the carboxyl-terminal hATC domain of hDREF, highly conserved among hAT transposase family members, possesses self-association activity. Immunoprecipitation analyses demonstrated that hDREF self-associates in vivo, dependent on hATC domain. Moreover, analyses using a series of hDREF mutants carrying amino acid substitutions in the hATC domain revealed that conserved hydrophobic amino acids are essential for self-association. Immunofluorescence studies further showed that all hDREF mutants lacking self-association activity failed to accumulate in the nucleus. Self-association-defective hDREF mutants also lost association with endogenous importin beta1. Moreover, electrophoretic gel-mobility shift assays revealed that the mutations completely abolished the DNA binding activity of hDREF. These results suggest that self-association of hDREF via the hATC domain is necessary for its nuclear accumulation and DNA binding. We also found that ZBED4/KIAA0637, another member of the human hAT family, also self-associates, again dependent on the hATC domain, with deletion resulting in loss of efficient nuclear accumulation. Thus, hATC domains of human hAT family members appear to have conserved functions in self-association that are required for nuclear accumulation.  相似文献   
85.
This study aimed to assess the relationship between basal metabolic rate (BMR) and metabolic heat production, and to clarify the involvement of BMR in determining the phenotype of cold tolerance. Measurements of BMR, maximum oxygen uptake, and cold exposure test were conducted on ten males. In the cold exposure test, rectal (T(rec)) and mean skin temperatures (T(ms)), oxygen uptake, and blood flow at forearm (BF(arm)) were measured during exposure to cold (10 degrees C) for 90 min. Significant correlations were observed between BMR and increasing rate of oxygen uptake, as well as between decreasing rate of BF(arm) and increasing rate of oxygen uptake at the end of cold exposure. These findings suggested that individuals with a lower BMR were required to increase their metabolic heat production during cold exposure, and that those with a higher BMR were able to moderate increased metabolic heat production during cold exposure because they were able to reduce heat loss. This study showed that BMR is an important factor in determining the phenotype of cold tolerance, and that individuals with a low BMR showed calorigenic-type cold adaptation, whereas subjects with a high BMR exhibited adiabatic-type cold adaptation by peripheral vasoconstriction.  相似文献   
86.
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.  相似文献   
87.
Primary aldosteronism is most often caused by aldosterone-producing adenoma (APA) and bi-lateral adrenal hyperplasia. Most APAs are caused by somatic mutations of various ion channels and pumps, the most common being the inward-rectifying potassium channel KCNJ5. Germ line mutations of KCNJ5 cause familial hyperaldosteronism type 3 (FH3), which is associated with severe hyperaldosteronism and hypertension. We present an unusual case of FH3 in a young woman, first diagnosed with primary aldosteronism at the age of 6 years, with bilateral adrenal hyperplasia, who underwent unilateral adrenalectomy (left adrenal) to alleviate hyperaldosteronism. However, her hyperaldosteronism persisted. At the age of 26 years, tomography of the remaining adrenal revealed two different adrenal tumors, one of which grew substantially in 4 months; therefore, the adrenal gland was removed. A comprehensive histological, immunohistochemical, and molecular evaluation of various sections of the adrenal gland and in situ visualization of aldosterone, using matrix-assisted laser desorption/ionization imaging mass spectrometry, was performed. Aldosterone synthase (CYP11B2) immunoreactivity was observed in the tumors and adrenal gland. The larger tumor also harbored a somatic β-catenin activating mutation. Aldosterone visualized in situ was only found in the subcapsular regions of the adrenal and not in the tumors. Collectively, this case of FH3 presented unusual tumor development and histological/molecular findings.  相似文献   
88.
89.
90.
We investigated the differences in the Fourier transform infrared (FTIR) spectra of normal and abnormal human placentas. Normal placentas, placentas with infant intrauterine growth restriction (IUGR), and placentas from mothers with diabetes mellitus (DM) were used, none of which had been treated before measurement. The tissues were divided into three parts: the upper one-third portion (P1), the middle portion (P2), and the lower one-third portion (P3). Placental tissues were also investigated histochemically. The differences of the main second-derivative FTIR spectra among P1, P2, and P3 in normal placentas were observed in bands appearing between 1080 and 1090 cm(-1). Bands in P2 were observed at 1083 cm(-1), which was significantly higher than that in P3 (p < 0.05). The spectrum of P2 tissue in placentas with infant IUGR had a peak at 1081 cm(-1), which was significantly different from those of P1 and P3 (p < 0.05). In placentas with DM, the P2 band was shifted to a peak at 1088 cm(-1). These data were well correlated with the histochemical sugar-chain staining pattern of the P2 portion of the placenta. Our data suggested that this IR technique is applicable to the clinical diagnosis of diseases in the gynecological field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号