首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   32篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   10篇
  2015年   10篇
  2014年   15篇
  2013年   30篇
  2012年   19篇
  2011年   17篇
  2010年   11篇
  2009年   19篇
  2008年   18篇
  2007年   19篇
  2006年   14篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   12篇
  2001年   8篇
  2000年   10篇
  1999年   13篇
  1998年   8篇
  1995年   5篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1972年   9篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
31.
We examined the influences of regular sexual activity and marital status on salivary testosterone levels in healthy adult Japanese men. Forty-four men (20–66 years) collected their saliva thrice a day (0900–1000, 1300–1400, and 1700–1800). The testosterone levels at each collection time negatively correlated with the ages of the participants; therefore, residual testosterone levels were used for analyses after correcting for age by linear regression. The testosterone-lowering effect of marriage was marginal and the regular sexual activity more strongly associated with lower testosterone levels in morning saliva. The possible neurofeedback systems underlying the phenomenon are discussed.  相似文献   
32.
33.
Crohn's disease (CD) is a chronic, relapsing inflammatory bowel disease, characterized by transmural inflammation. In CD, the recurrent inflammatory injury and tissue repair that occurs in the intestine can progress uncontrollably, leading to the proliferation of mesenchymal cells as well as fibrosis, characterized by excessive extracellular matrix deposition. These processes thicken the bowel wall, reducing flexibility, and often culminate in obstructive strictures. Because no effective measures are currently available to specifically treat or prevent intestinal stricturing, we sought to gain a better understanding of its pathogenesis by developing a mouse model of intestinal fibrosis. Because transforming growth factor (TGF)-beta1 can mediate both fibrosis and mesenchymal cell proliferation; we studied the effects of delivering adenoviral vectors encoding spontaneously active TGF-beta1 into the colons of mice. We first demonstrated that enema delivery of marker adenoviral vectors led to the transfection of the colonic epithelium and transient transgene expression. Histologically, control vectors caused an acute inflammatory response, involving the recruitment of neutrophils and mononuclear cells into the colonic lamina propria; however, infection caused little if any fibrosis. In contrast, the TGF-beta1 vector caused a more severe and prolonged inflammatory response as well as localized collagen deposition, leading to severe and progressive fibrosis. This was accompanied by the emergence of cells with a myofibroblast phenotype. Ultimately the fibrosis resulted in many of the TGF-beta1-transfected mice developing profound colonic obstruction. Through adenoviral gene transfer technology, we describe a novel mouse model of colitis and implicate TGF-beta1 in the pathogenesis of obstructive intestinal fibrosis.  相似文献   
34.
Oki M  Kamakaka RT 《Molecular cell》2005,19(5):707-716
The silenced HMR domain is restricted from spreading by barrier elements, and the right barrier is a unique t-RNA(THR) gene. We show that sequences immediately flanking the silenced domain were enriched in acetylated, but not methylated, histones, whereas the barrier element was associated with a nucleosome-free region. Surprisingly, the SAGA acetyltransferase resided across the entire region. We further demonstrate that a mutation in the barrier eliminated the nucleosome-free gap but only subtly altered the distribution of SAGA. Interestingly, neither reformation of the nucleosome nor mutations in chromatin-modifying enzymes alone led to an unrestricted spread of silenced chromatin. Double mutations in the t-RNA barrier and these complexes, on the other hand, led to a significant spread of Sir proteins. These results suggest two overlapping mechanisms function to restrict the spread of silencing: one of which involves a DNA binding element, whereas the other mechanism involves specific chromatin-modifying activities.  相似文献   
35.
In Neisseria meningitidis and related bacterial pathogens, sialic acids play critical roles in mammalian cell immunity evasion and are synthesized by a conserved enzymatic pathway that includes sialic acid synthase (NeuB, SiaC, or SynC). NeuB catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine, directly forming N-acetylneuraminic acid (or sialic acid). In this paper we report the development of a coupled assay to monitor NeuB reaction kinetics and an 18O-labeling study that demonstrates the synthase operates via a C-O bond cleavage mechanism. We also report the first structure of a sialic acid synthase, that of NeuB, revealing a unique domain-swapped homodimer architecture consisting of a (beta/alpha)8 barrel (TIM barrel)-type fold at the N-terminal end and a domain with high sequence identity and structural similarity to the ice binding type III antifreeze proteins at the C-terminal end of the enzyme. We have determined the structures of NeuB in the malate-bound form and with bound PEP and the substrate analog N-acetylmannosaminitol to 1.9 and 2.2 A resolution, respectively. Typical of other TIM barrel proteins, the active site of NeuB is located in a cavity at the C-terminal end of the barrel; however, the positioning of the swapped antifreeze-like domain from the adjacent monomer provides key residues for hydrogen bonding with substrates in the active site of NeuB, a structural feature that leads to distinct modes of substrate binding from other PEP-utilizing enzymes that lack an analogous antifreeze-like domain. Our observation of a direct interaction between a highly ordered manganese and the N-acetylmannosaminitol in the NeuB active site also suggests an essential role for the ion as an electrophilic catalyst that activates the N-acetylmannosamine carbonyl to the addition of PEP.  相似文献   
36.
37.
The 'Random Mutation Capture' assay allows for the sensitive quantitation of DNA mutations at extremely low mutation frequencies. This method is based on PCR detection of mutations that render the mutated target sequence resistant to restriction enzyme digestion. The original protocol prescribes an end-point dilution to about 0.1 mutant DNA molecules per PCR well, such that the mutation burden can be simply calculated by counting the number of amplified PCR wells. However, the statistical aspects associated with the single molecular nature of this protocol and several other molecular approaches relying on binary (on/off) output can significantly affect the quantification accuracy, and this issue has so far been ignored. The present work proposes a design of experiment (DoE) using statistical modeling and Monte Carlo simulations to obtain a statistically optimal sampling protocol, one that minimizes the coefficient of variance in the measurement estimates. Here, the DoE prescribed a dilution factor at about 1.6 mutant molecules per well. Theoretical results and experimental validation revealed an up to 10-fold improvement in the information obtained per PCR well, i.e. the optimal protocol achieves the same coefficient of variation using one-tenth the number of wells used in the original assay. Additionally, this optimization equally applies to any method that relies on binary detection of a small number of templates.  相似文献   
38.
We previously identified a novel polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) gene, which is designated Williams-Beuren syndrome chromosome region 17 (WBSCR17) because it is located in the chromosomal flanking region of the Williams-Beuren syndrome deletion. Recent genome-scale analysis of HEK293T cells treated with a high concentration of N-acetylglucosamine (GlcNAc) demonstrated that WBSCR17 was one of the up-regulated genes possibly involved in endocytosis (Lau, K. S., Khan, S., and Dennis, J. W. (2008) Genome-scale identification of UDP-GlcNAc-dependent pathways. Proteomics 8, 3294-3302). To assess its roles, we first expressed recombinant WBSCR17 in COS7 cells and demonstrated that it was N-glycosylated and localized mainly in the Golgi apparatus, as is the case for the other GalNAc-Ts. Assay of recombinant WBSCR17 expressed in insect cells showed very low activity toward typical mucin peptide substrates. We then suppressed the expression of endogenous WBSCR17 in HEK293T cells using siRNAs and observed phenotypic changes of the knockdown cells with reduced lamellipodium formation, altered O-glycan profiles, and unusual accumulation of glycoconjugates in the late endosomes/lysosomes. Analyses of endocytic pathways revealed that macropinocytosis, but neither clathrin- nor caveolin-dependent endocytosis, was elevated in the knockdown cells. This was further supported by the findings that the overexpression of recombinant WBSCR17 stimulated lamellipodium formation, altered O-glycosylation, and inhibited macropinocytosis. WBSCR17 therefore plays important roles in lamellipodium formation and the regulation of macropinocytosis as well as lysosomes. Our study suggests that a subset of O-glycosylation produced by WBSCR17 controls dynamic membrane trafficking, probably between the cell surface and the late endosomes through macropinocytosis, in response to the nutrient concentration as exemplified by environmental GlcNAc.  相似文献   
39.
40.
Deletion mutations within mitochondrial DNA (mtDNA) have been implicated in degenerative and aging related conditions, such as sarcopenia and neuro-degeneration. While the precise molecular mechanism of deletion formation in mtDNA is still not completely understood, genome motifs such as direct repeat (DR) and stem-loop (SL) have been observed in the neighborhood of deletion breakpoints and thus have been postulated to take part in mutagenesis. In this study, we have analyzed the mitochondrial genomes from four different mammals: human, rhesus monkey, mouse and rat, and compared them to randomly generated sequences to further elucidate the role of direct repeat and stem-loop motifs in aging associated mtDNA deletions. Our analysis revealed that in the four species, DR and SL structures are abundant and that their distributions in mtDNA are not statistically different from randomized sequences. However, the average distance between the reported age associated mtDNA breakpoints and their respective nearest DR motifs is significantly shorter than what is expected of random chance in human (p<10(-4)) and rhesus monkey (p = 0.0034), but not in mouse (p = 0.0719) and rat (p = 0.0437), indicating the existence of species specific difference in the relationship between DR motifs and deletion breakpoints. In addition, the frequencies of large DRs (>10 bp) tend to decrease with increasing lifespan among the four mammals studied here, further suggesting an evolutionary selection against stable mtDNA misalignments associated with long DRs in long-living animals. In contrast to the results on DR, the probability of finding SL motifs near a deletion breakpoint does not differ from random in any of the four mtDNA sequences considered. Taken together, the findings in this study give support for the importance of stable mtDNA misalignments, aided by long DRs, as a major mechanism of deletion formation in long-living, but not in short-living mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号