首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   766篇
  免费   39篇
  2022年   4篇
  2021年   6篇
  2019年   9篇
  2018年   7篇
  2017年   10篇
  2016年   13篇
  2015年   23篇
  2014年   24篇
  2013年   42篇
  2012年   46篇
  2011年   50篇
  2010年   18篇
  2009年   31篇
  2008年   49篇
  2007年   41篇
  2006年   45篇
  2005年   58篇
  2004年   46篇
  2003年   49篇
  2002年   39篇
  2001年   15篇
  2000年   14篇
  1999年   14篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   11篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   11篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1979年   8篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1969年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有805条查询结果,搜索用时 143 毫秒
131.
DOCK4, a member of DOCK180 family proteins, was originally identified as a product of a gene deleted during tumor progression. Although its tumor suppression properties have been reported, the regulation mechanism of this protein has not been fully elucidated. DOCK4 shares two conserved domains called as DHR-1 and DHR-2 domain as other members including DOCK180. Although DHR-1 in DOCK180 is reported to bind to PIP(3), whether that of DOCK4 exhibits similar function has yet not been examined. In a search for novel PIP(3) binding proteins by the PIP(3) analog beads binding assay, we found that DOCK4 and its novel splicing variant, whose exon1 and exon52 are different from the known one, bind to PIP(3). Binding assay using deletion mutants of DOCK4 revealed that the binding region falls into the DHR-1 domain. These results raise the possibility that DOCK4 may be regulated by PIP(3) to exert its function.  相似文献   
132.
Novel 2-[4-(aminoalkoxy)phenyl]-4(3H)-quinazolinone derivatives were identified as potent human H(3) receptor inverse agonists. After systematic modification of lead 5a, the potent and selective analog 5r was identified. Elimination of hERG K(+) channel and human alpha(1A)-adrenoceptor activities is the main focus of the present study.  相似文献   
133.
Maternally inherited female-biased sex ratios have been documented in many invertebrate species. One cause of such biased sex ratios is male killing, i.e. only males die. In most species, male killing occurs during embryonic stages (early male killing) and is associated with cytoplasmic bacteria, including Wolbachia, Spiroplasma, Rickettsia, Flavobacteria and gamma proteobacteria. However, the oriental tea tortrix, Homona magnanima, is one of the few species in which male death occurs in the larval or pupal stage, and is thus an example of late male killing. We partially purified the agent causing late male killing in H. magnanima and showed that it consists of two RNA sequences. This represents an entirely novel agent causing late male killing.  相似文献   
134.
Intestinal absorption of food proteins is well known, whereas its physiological significance remains to be investigated. Various amounts (1, 10 and 50 mg) of ovalbumin were orally administered to mice and the blood kinetics were subsequently analyzed by two-site ELISA. The blood ovalbumin concentration consistently reached its maximum (7-90 ng/ml) about 20 min after the oral administration and then gradually decreased in a dose-dependent manner. Only intact (45 kDa) and truncated (40 kDa) ovalbumins were always detected in the blood independently of the administration site, intra-stomach or intra-intestine, while various fragments of the protein were observed in the gastrointestinal lumen after the oral administration. Recognition by a specific monoclonal antibody and an acidic shift of its pI value suggested that the 40-kDa truncated ovalbumin was produced by intracellular limited proteolysis at its C-terminus. Such stable absorption and blood kinetics of undigested ovalbumin in normal mice suggest some sort of physiological significance for the intestinal uptake of intact food proteins.  相似文献   
135.
Primordial germ cells (PGCs) in mouse embryos likely include heterogeneous cells having distinct cellular properties. In the present study, we found that heterogeneity of PGCs can be defined by the expression of integrin α6 and c-Kit. The changes in integrin α6 and c-Kit expression in PGCs were obvious as embryonic development progressed, and the PGCs became a mixture of populations consisting of cells with distinct levels of cell surface protein expression. The changes and heterogeneity of cell surface protein expression mainly reflected asynchronous differentiation of PGCs. Apoptosis of PGCs was biased in populations of c-Kit or integrin α6 negative PGCs at particular developmental stages, suggesting possible linkage between PGC apoptosis and the levels of expression of these cell surface proteins. Histochemical analysis confirmed the heterogeneous expression of c-Kit and integrin α6 in PGCs in embryonic gonads, and revealed that PGCs showing different levels of integrin α6 or c-Kit expression and the apoptotic PGCs were scattered and did not show specific localization within gonads. The present study enables us to analyze and isolate populations of living PGCs showing a distinct status of differentiation, or different properties of proliferation or of cell death in individual embryos, and provides a new strategy to examine the mechanisms of PGC development.  相似文献   
136.
The distribution of a phenotypic state is often discontinuous and dispersed. An example of such a distribution can be found in the shell shapes of terrestrial gastropods, which exhibit a bimodal distribution whereby species possess either a tall shell or a flat shell. Here we propose a simple model to test the hypothesis that the bimodal distribution relates to the optimum shape for shell balance on the substrates. This model calculates the theoretical shell balance by moment and obtains empirical distribution of shell shape by compiling published data and performing a new analysis. The solution of the model supports one part of the hypothesis, showing that a low-spired shell is the best balanced and is better suited for locomotion on horizontal surface. Additionally, the model shows that both high- and low-spired shells are well balanced and suited on vertical surfaces. The shell with a spire index (shell height divided by diameter) of 1.4 is the least well balanced as a whole. Thus, spire index is expected to show a bimodal distribution with a valley at 1.4. This expectation was supported by empirical distribution of a spire index, suggesting that the bimodality of shell shape in terrestrial gastropods is related to shell balance.  相似文献   
137.
Okajima Y  Kumazawa Y 《Gene》2009,441(1-2):28-35
Complete or nearly complete nucleotide sequences of mitochondrial genomes (mtDNAs) were determined from eight species which, together with previous mtDNA data for two other taxa, cover most subfamilies of Iguanidae sensu lato. These iguanid mtDNAs were found to be rather conservative with respect to gene arrangements and molecular evolutionary rates, which contrasts with mtDNAs of Acrodonta (Agamidae and Chamaeleonidae) in which several gene rearrangements and highly accelerated molecular evolutionary rates have been known. Phylogenetic analyses consistently suggested the earliest shoot-off of a Malagasy subfamily Oplurinae and an affinity of Polychrotinae and Tropidurinae sensu stricto. However, even with the ample molecular characters derived from complete mtDNA sequences, phylogenetic relationships between iguanid subfamilies were poorly resolved in general, presumably due to the rapid ancient cladogenesis. Divergence time estimation without assuming the molecular clock suggested the Late Triassic/Early Jurassic divergence of Iguanidae from acrodonts and the Middle/Late Jurassic divergence of Oplurinae from the other iguanids. Together with geological and paleontological evidence, these results led us to propose Gondwanan vicariance for the origin of Malagasy oplurines without invoking a land bridge connection between South America/Antarctica and drifting Madagascar/India.  相似文献   
138.
The β(1,2)-xylose- and/or α(1,3)-fucose-containing cross-reactive carbohydrate determinants (CCDs) are present in various plant and insect N-glycans, and have been attracted as potential antigens in IgE-mediated allergies and immunologically undesired post-translational products on some recombinant therapeutic proteins. By using ELISA and immunoblotting, CCDs-specific IgG and IgE antibodies from some, but not all, of mice and humans were found to fully retain their binding activity after a typical periodate-treatment to CCDs, which did cause the CCDs’ antigenic activity to those from the other mice and rabbits to disappear almost completely. Furthermore, the mouse IgE recognizing the periodate-resistant CCDs induced the CCDs/IgE-dependent degranulation of rat basophilic RBL-2H3 cells. These findings indicate that in some cases CCDs include those dependent of the core trisaccharide more strongly than the terminal xylose and fucose, which might have been screened out in the CCDs analyses based on the loss of antibody-binding by the periodate-treatment.  相似文献   
139.
AimsInsulinoma-associated protein 2 (IA-2) is a member of the protein tyrosine phosphatase family that is localized on the insulin granule membrane. IA-2 is also well known as one of the major autoantigens in Type 1 diabetes mellitus. IA-2 gene deficient mice were recently established and showed abnormalities in insulin secretion. Thus, detailed localization of IA-2 was studied using wild-type and IA-2 gene deficient mice.Main methodsTo localize IA-2 expression in mouse neuroendocrine tissues, monoclonal antibodies were generated against IA-2 and western blot and immunohistochemical analyses were carried out in IA-2+/+ mice. IA-2?/? mice served as a negative control.Key findingsWestern blot analysis revealed that the 65 kDa form of IA-2 was observed in the cerebrum, cerebellum, medulla oblongata, pancreas, adrenal gland, pituitary gland, muscular layers of the stomach, small intestine, and colon. By immunohistochemical analysis, IA-2 was produced in endocrine cells in pancreatic islets, adrenal medullary cells, thyroid C-cells, Kulchitsky cells, and anterior, intermediate, and posterior pituitary cells. In addition, IA-2 was found in somatostatin-producing D-cells and other small populations of cells were scattered in the gastric corpus. IA-2 expression in neurites was confirmed by the immunostaining of IA-2 using primary cultured neurons from the small intestine and nerve growth factor (NGF)-differentiated PC12 cells.SignificanceThe IA-2 distribution in peripheral neurons appeared more intensely in neurites rather than in the cell bodies.  相似文献   
140.
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are generated inside a diploid cell. Gip1, a sporulation-specific targeting subunit of protein phosphatase type 1, together with its catalytic subunit, Glc7, colocalizes with septins along the extending prospore membrane and is required for septin organization and spore wall formation. However, the mechanism by which Gip1-Glc7 phosphatase promotes these events is unclear. We show here that Ysw1, a sporulation-specific coiled-coil protein, has a functional relationship to Gip1-Glc7 phosphatase. Overexpression of YSW1 partially suppresses the sporulation defect of a temperature-sensitive allele of gip1. Ysw1 interacts with Gip1 in a two-hybrid assay, and this interaction is required for suppression. Ysw1 tagged with green fluorescent protein colocalizes with septins and Gip1 along the extending prospore membrane during spore formation. Sporulation is partially defective in ysw1Δ mutant, and cytological analysis revealed that septin structures are perturbed and prospore membrane extension is aberrant in ysw1Δ cells. These results suggest that Ysw1 functions with the Gip1-Glc7 phosphatase to promote proper septin organization and prospore membrane formation.Diploid cells of Saccharomyces cerevisiae subjected to nitrogen limitation in the presence of a nonfermentable carbon source undergo the developmental process of sporulation (14, 23, 35). Four nuclei produced by two rounds of nuclear division, meiosis I and II, are encapsulated by newly formed double-membrane structures, called prospore membranes, and are finally packaged into spores covered with layered spore walls (35).In this process, prospore membrane formation is one of the most dynamic events. Early in meiosis II, the cytoplasmic surface of the meiotic spindle pole body (SPB) is modified by the recruitment of sporulation-specific protein complex that acts as a site of vesicle recruitment (2, 22, 39). Post-Golgi secretory vesicles dock to the surface of the SPBs and fuse with each other, generating prospore membranes (33, 34). The prospore membranes then grow to engulf daughter nuclei through a series of stages that are categorized by the membranes'' appearance in the fluorescence microscope (12). Initially, the membranes appear as small horseshoes that enlarge to become small round membrane structures. The prospore membranes then extend into a tube-like shape, engulfing the nucleus, as well as some cytosol and organelles (12). After this extension, prospore membrane undergoes a rapid change to a mature round form. This rounding of the membrane is coordinated with membrane closure (12). Spore wall materials are then deposited into the luminal space created by closure of the prospore membrane (9).In addition to the meiotic plaque of the SPB, two protein complexes are associated with the prospore membrane as it forms. One is the leading edge protein complex, which exists at the lip of the prospore membranes and consists of three components: Ssp1, Ady3, and Don1 (27, 30, 38). Ssp1 is the most important of the three and is required for proper extension of the prospore membrane (30). The second complex is a sporulation-specific septin structure. The septins are a family of cytoskeletal proteins, which form filaments (18, 50). Septins are conserved from yeast to mammals. They were originally found and have been extensively studied in S. cerevisiae. In vegetatively growing S. cerevisiae cells, five septin proteins—Cdc3, Cdc10, Cdc11, Cdc12, and Shs1—form a ring at the bud neck that serves as a scaffold for many additional proteins, as well as a barrier to diffusion of proteins between the mother and the bud (19, 29, 50). In sporulating cells, the set of septin proteins is changed. Cdc3 and Cdc10, along with two sporulation-specific septins, Spr3 and Spr28, form a pair of parallel bars or sheets associated with each prospore membrane (11, 15, 29). Although deletion of sporulation-specific septins has only modest effects on sporulation (11, 15), their specific localization suggests that they have some function during prospore membrane formation. Septin organization in vegetatively growing cells is regulated by phosphorylation and dephosphorylation of septin components and septin-associated proteins (29). In sporulating cells, a sporulation-specific protein phosphatase type 1 (PP1) complex Gip1-Glc7 is required for the formation of septin structures (46), although whether this phosphatase acts directly on the septin proteins is unknown.The PP1 catalytic subunit is highly conserved in eukaryotes and is involved in a variety of cellular processes (8, 44). In S. cerevisiae it is encoded by an essential gene, GLC7, and functions in glycogen synthesis, glucose repression, chromosome segregation, cell wall organization, endocytosis, mating, and sporulation (3, 17, 24, 42, 44, 47, 53). The specificity of this enzyme is determined by targeting subunits. GIP1 was originally isolated in a two-hybrid screen by using GLC7 as a bait, and this interaction was confirmed by coimmunoprecipitation of the two proteins (48). GIP1 is a sporulation-specific gene required for sporulation. Further analysis revealed that Gip1 and Glc7 colocalize with septins during sporulation and are required for both septin organization and spore wall formation (46). The specific targets or cofactors of this PP1 complex are unknown.To elucidate the role of Gip1-Glc7 phosphatase, we screened for high-copy suppressors of a temperature-sensitive allele of gip1 and isolated YSW1. Ysw1 interacts with Gip1 and colocalizes with septins similar to Gip1. Furthermore, a ysw1Δ mutant displays aberrant septin structures and prospore membrane extension. These results suggest that Ysw1 may function with Gip1-Glc7 to regulate proper septin organization and prospore membrane formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号