首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8431篇
  免费   662篇
  国内免费   2篇
  9095篇
  2024年   7篇
  2023年   26篇
  2022年   97篇
  2021年   143篇
  2020年   110篇
  2019年   161篇
  2018年   231篇
  2017年   182篇
  2016年   319篇
  2015年   430篇
  2014年   527篇
  2013年   581篇
  2012年   796篇
  2011年   709篇
  2010年   494篇
  2009年   406篇
  2008年   588篇
  2007年   573篇
  2006年   476篇
  2005年   398篇
  2004年   383篇
  2003年   349篇
  2002年   232篇
  2001年   135篇
  2000年   119篇
  1999年   95篇
  1998年   52篇
  1997年   43篇
  1996年   28篇
  1995年   28篇
  1994年   24篇
  1993年   13篇
  1992年   40篇
  1991年   26篇
  1990年   26篇
  1989年   24篇
  1988年   27篇
  1987年   14篇
  1986年   20篇
  1985年   16篇
  1984年   13篇
  1983年   13篇
  1982年   14篇
  1981年   17篇
  1980年   9篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1973年   7篇
  1972年   8篇
排序方式: 共有9095条查询结果,搜索用时 0 毫秒
31.
32.
Summary A mutant strain lacking in activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was screened after UV-treatment ofPseudomonas sp. CU6. The properties of the two strains, original and mutant, were compared on the basis of parameter values estimated from kinetic simulations of the enzymatic formation of L-cysteine from D,L-ATC. Both strains suffered from product inhibition, though inhibition was less for the mutant strain.  相似文献   
33.
The effects of monopalmitoylphosphatidylcholine (MPPC or lysophosphatidylcholine) and a series of short-chain primary alcohols (ethanol, 1-butanol and 1-hexanol) on cell shape, hemolysis, viscoelastic properties and membrane lipid packing of human red blood cells (RBCs) were studied. For MPPC, the effective membrane concentration to induce the formation of stage 3 echinocytes (8 x 10(6) molecules per cell) was one order of magnitude lower than that needed to induce 50% hemolysis (7 x 10(7) molecules per cell). In contrast, short-chain alcohols induced both shape changes and hemolysis within close concentration range (2.5 x 10(8) to 3.5 x 10(8) molecules per cell). Viscoelastic properties of the RBCs were studied by micropipette aspiration and correlated with shape change. Ethanol-treated RBCs showed a decrease in membrane elastic modulus and an increase in membrane viscosity in the recovery phase at the early stage of shape change. MPPC-treated cells showed the same type of viscoelastic changes, but these were not observed until the formation of stage 2 echinocytes. High-resolution solid-state 13C nuclear magnetic resonance technique was applied to study membrane lipid packing in the ghost membrane by following the chemical shift of hydrocarbon chains. Both MPPC and ethanol caused the 13C-NMR chemical shift to move upfield, indicating that membrane lipids were expanded due to the intercalation of these exogenous molecules. Using data obtained from model compounds, we convert values of chemical shift into a lipid packing parameter, i.e., number of gauche bonds for fatty acyl hydrocarbon chains. Approximately 10(8) interacting molecules per cell are required to induce a detectable change of lipid packing by both MPPC and ethanol. The results indicate that homolysis occurs at a smaller surface area for MPPC- than ethanol-treated RBCs. Our findings suggest that progressive changes in the molecular packing in the membrane lead eventually to hemolysis, but the mode responsible for shape transformation varies with these amphipaths.  相似文献   
34.
Lazar GB  Dudits D  Sung ZR 《Genetics》1981,98(2):347-356
Cycloheximide resistance (CHr) was shown to be a function expressed in differentiated plant tissues, but not in unorganized callus tissues. A variant, WCH105, expressing CHr in the callus, as well as in regenerated plantlets, was isolated from a cell line derived from a wild carrot plant. The plantlets regenerated from WCH105 are green, but do not produce normal, dissected leaves. Protoplasts of WCH105 were fused with that of a cycloheximidesensitive (CHs) cell line derived from an albino, domesticated carrot. Hybrid selection was based on (1) irreversible growth inhibition of WCH105 protoplasts by iodacetamide, and (2) restoration of green plants producing dissected leaves.——Analysis of the CHr trait as an unselected marker in the callus cells of the somatic hybrids indicated that it behaved as a recessive. The combined recessive and resistant phenotype of this trait allowed the recovery of CHr segregants from CHs hybrids at a frequency of 10-4, 1000 times higher than the spontaneous frequency of CHr. The recovery of CHr somatic segregants confirmed the recessiveness of the CHr trait.  相似文献   
35.
The deformation of a portion of erythrocyte during aspirational entry into a micropipette has been analyzed on the basis of a constant area deformation of an infinite plane membrane into a cylindrical tube. Consideration of the equilibrium of the membrane at the tip of the pipette has generated the relation between the aspirated length and the dimensionless time during deformational entry as well as during relaxation after the removal of aspiration pressure. Experimental studies on deformation and relaxation of normal human erythrocytes were performed with the use of micropipettes and a video dimension analyzer which allowed the continuous recording of the time-courses. The deformation consisted of an initial rapid phase with a membrane viscosity (range 0.6 x 10(-4) to 4 x 10(-4) dyn.s/cm) varying inversely with the degree of deformation and a later slow phase with a high membrane viscosity (mean 2.06 x 10(-2) dyn.s/cm) which was not correlated with the degree of deformation. The membrane viscosity of the recovery phase after 20 s of deformation (mean 5.44 x 10(-4) dyn.s/cm) was also independent of the degree of deformation. When determined after a short period of deformation (e.g., 2 s), however, membrane viscosity of the recovery phase became lower and agreed with that of the deformation phase. These results suggest that the rheological properties of the membrane can undergo dynamic changes depending on the extent and duration of deformation, reflecting molecular rearrangement in response to membrane strain.  相似文献   
36.
Penicillium species have been actively studied in various fields, and many new and unrecorded species continue to be reported in Korea. Moreover, unidentified and misidentified Korean Penicillium species still exist in GenBank. Therefore, it is necessary to revise the Korean Penicillium inventory based on accurate identification. We collected Korean Penicillium nucleotide sequence records from GenBank using the newly developed software, GenMine, and re-identified Korean Penicillium based on the maximum likelihood trees. A total of 1681 Korean Penicillium GenBank nucleotide sequence records were collected from GenBank. In these records, 1208 strains with four major genes (Internal Transcribed Spacer rDNA region, β-tubulin, Calmodulin and RNA polymerase II) were selected for Penicillium re-identification. Among 1208 strains, 927 were identified, 82 were identified as other genera, the rest remained undetermined due to low phylogenetic resolution. Identified strains consisted of 206 Penicillium species, including 156 recorded species and 50 new species candidates. However, 37 species recorded in the national list of species in Korea were not found in GenBank. Further studies on the presence or absence of these species are required through literature investigation, additional sampling, and sequencing. Our study can be the basis for updating the Korean Penicillium inventory.  相似文献   
37.
A step-wise procedure for the regeneration of fertile plants by organogenesis from cultures of the economically important Phaseolus angularis L., cultivars: KS-6, KS-7 and KS-8 using etiolated seedlings was established. Pre-culture of 5-day old seedling explants with MS (Murashige and Skoog (1962) Physiol Plant 15:473–493) + B5-vitamins (Gamborg et al. (1968) Exp Cell Res 50:151–158) liquid medium containing either 5.0 μM TDZ or 5.0 μM BAP under dark condition was essential for organogenesis. Bud growth and shoot multiplication were stimulated by reducing the BAP concentrations from 5.0 to 2.5 μM after 3 weeks. The maximum frequency of shoot induction was 65.2% (33.8 ± 2.54 shoots/explant) in cultivar KS-8 followed by KS-7 34.6% (23.4 ± 1.91 shoots/explant) and KS-6 30.6% (21.2 ± 2.28 shoots/explant). The multiplied buds elongated after transferring to solid MSB5 medium supplemented with 4.0 μM GA3, 12.5 μM AgNO3 and 0.4 μM IBA. Up to 98% rooting efficiency of was obtained when the shoots were pulse-treated with liquid medium containing 4.5 μM IBA for 10 min. The rooted plantlets were transferred to pots in the greenhouse, where they grew, mature, flowered and bared pod normally. The efficient shoot bud induction capability was found to be cultivar dependent. All the three cultivars tested formed multiple shoots. This efficient and rapid regeneration system may also be helpful for Agrobacterium- or particle gun-mediated transformation for this important legume crop.  相似文献   
38.
39.
Anthranilic acid derivatives bearing basic amines were prepared and evaluated in vitro and in vivo as inhibitors of MMP-1, MMP-9, MMP-13, and TACE. Piperazine 4u has been identified as a potent, selective, orally active inhibitor of MMP-9 and MMP-13.  相似文献   
40.
The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号