首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848篇
  免费   57篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   11篇
  2019年   9篇
  2018年   17篇
  2017年   10篇
  2016年   25篇
  2015年   36篇
  2014年   48篇
  2013年   63篇
  2012年   76篇
  2011年   90篇
  2010年   61篇
  2009年   46篇
  2008年   62篇
  2007年   66篇
  2006年   51篇
  2005年   50篇
  2004年   42篇
  2003年   49篇
  2002年   27篇
  2001年   6篇
  2000年   5篇
  1999年   11篇
  1998年   2篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有905条查询结果,搜索用时 38 毫秒
851.
Caldesmon, an inhibitory actin binding protein, binds to actin and inhibits actin-myosin interactions, whereas caldesmon phosphorylation reverses the inhibitory effect of caldesmon on actin-myosin interactions, potentially leading to enhanced contraction. The goal of this study was to investigate the cellular signaling pathway responsible for caldesmon phosphorylation, which is involved in the regulation of the contraction induced by dexmedetomidine (DMT), an alpha-2 adrenoceptor agonist, in endothelium-denuded rat aortas. SP600125 (a c-Jun NH2-terminal kinase [JNK] inhibitor) dose-response curves were generated in aortas that were pre-contracted with DMT or phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator. Dose-response curves to the PKC inhibitor chelerythrine were generated in rat aortas pre-contracted with DMT. The effects of SP600125 and rauwolscine (an alpha-2 adrenoceptor inhibitor) on DMT-induced caldesmon phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) were investigated by western blot analysis. PDBu-induced caldesmon and DMT-induced PKC phosphorylation in rat aortic VSMCs was investigated by western blot analysis. The effects of GF109203X (a PKC inhibitor) on DMT- or PDBu-induced JNK phosphorylation in VSMCs were assessed. SP600125 resulted in the relaxation of aortas that were pre-contracted with DMT or PDBu, whereas rauwolscine attenuated DMT-induced contraction. Chelerythrine resulted in the vasodilation of aortas pre-contracted with DMT. SP600125 and rauwolscine inhibited DMT-induced caldesmon phosphorylation. Additionally, PDBu induced caldesmon phosphorylation, and GF109203X attenuated the JNK phosphorylation induced by DMT or PDBu. DMT induced PKC phosphorylation in rat aortic VSMCs. These results suggest that alpha-2 adrenoceptor-mediated, DMT-induced contraction involves caldesmon phosphorylation that is mediated by JNK phosphorylation by PKC.  相似文献   
852.

Introduction

The culture-negative conversion rate of sputum after 2 months of treatment in patients with pulmonary tuberculosis (TB) is used as a reliable surrogate marker for relapse after completion of treatment. We hypothesized that culture conversion of sputum at 2 months of anti-TB treatment and the time to culture conversion are different among pulmonary TB patients who are diagnosed using different methods.

Methods

Culture-confirmed pulmonary TB patients who were diagnosed between 1 January, 2011 and 31 December, 2012 were classified into three groups based on the diagnostic method that prompted treatment initiation: positive acid-fast bacilli (AFB) staining of sputum (smear-positive group), negative AFB staining, but Mycobacterium tuberculosis was cultured from sputum (culture-positive group), and positive AFB staining, positive polymerase chain reaction (PCR) for M. tuberculosis, or culture of M. tuberculosis from a bronchoscopic specimen (bronchoscopy group). Rates of negative mycobacterial culture conversion at 2 months of anti-TB treatment and the time to negative culture conversion of sputum were compared among the three groups.

Results

A total of 203 patients with culture-confirmed pulmonary TB were included in the final analysis. TB patients in the culture-positive group (94.1%) and the bronchoscopy group (97.6%) showed a higher culture conversion rate at 2 months of treatment than those in the smear-positive group (78.7%, P = 0.001). Additionally, the time to culture conversion was longer in the smear-positive group (median, 40 days) than in the culture-positive (median, 19 days; P = 0.009) and bronchoscopy groups (median, 29 days; P = 0.004).

Conclusions

The higher culture conversion rate at 2 months and the shorter time to culture conversion among pulmonary TB patients with a negative AFB smear suggests the feasibility of shortening treatment duration and isolation in these patients.  相似文献   
853.
854.
A number of natural phytochemicals have anti‐photoaging properties that appear to be mediated through the inhibition of matrix metalloproteinase‐1 (MMP‐1) expression, but their direct target molecule(s) and mechanism(s) remain unclear. We investigated the effect of naringenin, a major flavonoid found in citrus, on UVB‐induced MMP‐1 expression and identified its direct target. The HaCaT human skin keratinocyte cell line and 3‐dimensional (3‐D) human skin equivalent cultures were treated or not treated with naringenin for 1 hr before exposure to UVB. The mechanism and target(s) of naringenin were analysed by kinase assay and multiplex molecular assays. Dorsal skins of hairless mice were exposed to UVB 3 times per week, with a dose of irradiation that was increased weekly by 1 minimal erythema dose (MED; 45 mJ/cm2) to 4 MED over 15 weeks. Wrinkle formation, water loss and water content were then assessed. Naringenin suppressed UVB‐induced MMP‐1 expression and AP‐1 activity, and strongly suppressed UVB‐induced phosphorylation of Fos‐related antigen (FRA)‐1 at Ser265. Importantly, UVB irradiation‐induced FRA1 protein stability was reduced by treatment with naringenin, as well as with a mitogen‐activated protein kinase (MEK) inhibitor. Naringenin significantly suppressed UVB‐induced extracellular signal‐regulated kinase 2 (ERK2) activity and subsequently attenuated UVB‐induced phosphorylation of p90RSK by competitively binding with ATP. Constitutively active MEK (CA‐MEK) increased FRA1 phosphorylation and expression and also induced MMP‐1 expression, whereas dominant‐negative ERK2 (DN‐ERK2) had opposite effects. U0126, a MEK inhibitor, also decreased FRA1 phosphorylation and expression as well as MMP‐1 expression. The photoaging data obtained from mice clearly demonstrated that naringenin significantly inhibited UVB‐induced wrinkle formation, trans‐epidermal water loss and MMP‐13 expression. Naringenin exerts potent anti‐photoaging effects by suppressing ERK2 activity and decreasing FRA1 stability, followed by down‐regulation of AP‐1 transactivation and MMP‐1 expression.  相似文献   
855.

Background and objectives

Dysregulation of the autophagy pathway has been suggested as an important mechanism in the pathogenesis of Parkinson’s disease (PD). Therefore, modulation of autophagy may be a novel strategy for the treatment of PD. Recently, an active form of vitamin D3 has been reported to have neuroprotective properties. Therefore, we investigated the protective, autophagy-modulating effects of 1,25-dyhydroxyvitamin D3 (calcitriol) in an in vitro model of Parkinson’s disease.

Methods

An in vitro model of Parkinson’s disease, the rotenone-induced neurotoxicity model in SH-SY5Y cells was adapted. We measured cell viability using an MTT assay, Annexin V/propidium iodide assay, and intracellular reactive oxygen species levels and analyzed autophagy-associated intracellular signaling proteins by Western blotting.

Results

Rotenone treatment of SH-SY5Y cells reduced their viability. This treatment also increased reactive oxygen species levels and decreased levels of intracellular signaling proteins associated with cell survival; simultaneous exposure to calcitriol significantly reversed these effects. Additionally, calcitriol increased levels of autophagy markers, including LC3, beclin-1, and AMPK. Rotenone inhibited autophagy, as indicated by decreased beclin-1 levels and increased mTOR levels, and this effect was reversed by calcitriol treatment.

Discussion

Calcitriol protects against rotenone-induced neurotoxicity in SH-SY5Y cells by enhancing autophagy signaling pathways such as those involving LC3 and beclin-1. These neuroprotective effects of calcitriol against rotenone-induced dopaminergic neurotoxicity provide an experimental basis for its clinical use in the treatment of PD.  相似文献   
856.
Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-l-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of compensatory regulation may exist to maintain overall proportions in the neural tube. We propose a model in which Kif11 normally functions during mitotic spindle formation to facilitate the progression of radial glia through mitosis, which leads to the maturation of progeny into specific secondary neuronal and glial lineages in the developing neural tube.  相似文献   
857.
858.
Mucor javanicus lipase was effectively immobilized on silica nanoparticles which were prepared by Stöber method. Glycidyl methacrylate (GMA), which bears a reactive epoxide group, was incorporated onto the surface of the nanoparticles and the epoxide groups were directly used for multipoint coupling of the enzyme. We also introduced amine residues by coupling ethylene diamine (EDA) to the epoxide group of GMA. M. javanicus lipase was covalently immobilized onto the amine-activated silica nanoparticles by using glutaraldehyde (GA) or 1,4 phenylene diisothiocyanate (NCS) as a coupling agent. The lipase loading capacities of the EDA-GA and EDA-NCS nanoparticles (81.3 and 60.9 mg g−1, respectively) were much higher than that of the unmodified GMA nanoparticles (18.9 mg g−1). The relative hydrolytic activities in an aqueous medium of the lipases immobilized on EDA-GA and EDA-NCS attached silica nanoparticles (115% and 107%, respectively) were significantly high and almost in the same range with the free enzyme. This may be due to the improvement of the enzyme–substrate interaction by avoiding the potential aggregation of free lipase molecules. The immobilized lipases were also more resistant to temperature inactivation than the free form. This work demonstrates that the size-controlled silica nanoparticles can be efficiently employed as host materials for enzyme immobilization leading to high activity and stability of the immobilized enzymes.  相似文献   
859.
The purpose of this study was to develop molecular identification method for medical mushrooms and their preparations based on the nucleotide sequences of nuclear large subunit (LSU) rDNA. Four specimens were collected of each of the three representative medicinal mushrooms used in Korea: Ganoderma lucidum, Coriolus versicolor, and Fomes fomentarius. Fungal material used in these experiments included two different mycelial cultures and two different fruiting bodies from wild or cultivated mushrooms. The genomic DNA of mushrooms were extracted and 3 nuclear LSU rDNA fragments were amplified: set 1 for the 1.1-kb DNA fragment in the upstream region, set 2 for the 1.2-kb fragment in the middle, and set 3 for the 1.3-kb fragment downstream. The amplified gene products of nuclear large subunit rDNA from 3 different mushrooms were cloned into E. coli vector and subjected to nucleotide sequence determination. The sequence thus determined revealed that the gene sequences of the same medicinal mushroom species were more than 99.48% homologous, and the consensus sequences of 3 different medicinal mushrooms were more than 97.80% homologous. Restriction analysis revealed no useful restriction sites for 6-bp recognition enzymes for distinguishing the 3 sequences from one another, but some distinctive restriction patterns were recognized by the 4-bp recognition enzymes AccII and HhaI. This analysis was also confirmed by PCR-RFLP experiments on medicinal mushrooms.  相似文献   
860.
A large series of N6-substituted-4'-thioadenosines were synthesized starting from D-gulonic-gamma-lactone, and structure-activity relationships were studied at the human A3 and other subtypes of adenosine receptors (ARs). 2-Chloro-substituted and 2-H analogues were compared. 2-Chloro-N6-methyl-4'-thioadenosine 19b was a highly potent and selective agonist (Ki=0.8+/-0.1 nM in binding) at the A3AR, and displayed the same relative efficacy in receptor activation as a known full agonist, Cl-IB-MECA. Most of N6-substituted-4'-thioadenosines were less potent in binding than the corresponding N6-substituted-adenosines or N6-substituted-4'-thioadenosine-5'-uronamides. N6-(3-Iodobenzyl) derivative 19g was demonstrated to be an A3AR-selective partial agonist displaying a Ki value of 3.2 nM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号