首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   10篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   6篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1986年   1篇
排序方式: 共有107条查询结果,搜索用时 515 毫秒
41.
The purinergic receptor P2X7 is involved in cell death, inhibition of intracellular infection and secretion of inflammatory cytokines. The role of the P2X7 receptor in bacterial infection has been primarily established in macrophages. Here we show that primary gingival epithelial cells, an important component of the oral innate immune response, also express functional P2X7 and are sensitive to ATP-induced apoptosis. Porphyromonas gingivalis, an intracellular bacterium and successful colonizer of oral tissues, can inhibit gingival epithelial cell apoptosis induced by ATP ligation of P2X7 receptors. A P. gingivalis homologue of nucleoside diphosphate kinase (NDK), an ATP-consuming enzyme, is secreted extracellularly and is required for maximal suppression of apoptosis. An ndk -deficient mutant was unable to prevent ATP-induced host-cell death nor plasma membrane permeabilization in the epithelial cells. Treatment with purified recombinant NDK inhibited ATP-mediated host-cell plasma membrane permeabilization in a dose-dependent manner. Therefore, NDK promotes survival of host cells by hydrolysing extracellular ATP and preventing apoptosis-mediated through P2X7.  相似文献   
42.
Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the ‘inflammasome’, and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1−/− mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1−/− mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1−/− mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.  相似文献   
43.
An N-dansylated peptide derived from the Plasmodium berghei circumsporozoite protein (PbCS 253-260) bound in an allele-specific manner to a single-chain Kd molecule (SC-Kd), and its binding resulted in significant fluorescent enhancement. The binding kinetics of unlabelled peptides could be determined by pre-incubating dansylated PbCS with a concentrated suspension of SC-Kd, and then diluting this mixture in the presence of unmodified peptide. The time-dependence of the ensuing fluorescence decrease could be fitted to a single-exponential, which gave an association rate constant of 77 M-1s-1 for unlabelled PbCS.  相似文献   
44.
45.
Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the sources of ROS production in epithelial cells following infection with C. trachomatis. In this study, we provide evidence that basal levels of ROS are generated during chlamydial infection by NADPH oxidase, but ROS levels, regardless of their source, are enhanced by an NLRX1-dependent mechanism. Significantly, the presence of NLRX1 is required for optimal chlamydial growth.  相似文献   
46.
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase‐independent, mitochondrion‐related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG‐based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild‐type p53‐containing mouse macrophages and p53‐deficient human macrophages. Most leptospire‐infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1‐phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53‐dependent p21Cip1/WAF1 and pro‐apoptotic Bcl‐2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire‐induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage‐dependent p53‐Bax/Noxa/Puma‐AIF/EndoG signalling mediates the leptospire‐induced cell cycle arrest and caspase‐independent apoptosis of macrophages.  相似文献   
47.
Enteroviruses (EV) have been increasingly identified as the causative agent for unknown etiological encephalitis in many parts of the world, but the long period surveillance for enterovirus-associated encephalitis (EAE) was not reported in China. From 2002-2012 in Zhejiang, Coxsackieviruses A9, B1, B2, B3, B4, B5; and echoviruses 3, 4, 6, 9, 14, 25, 30 were detected from the unknown etiological encephalitis cases, with coxsackievirus B4 been identified here for the first time. From 2002-2004 and 2010-2012, echovirus 30 was found to be the periodically predominant serotype for in the EAE. The molecular typing results showed that all the EV isolates from this study belonged to the human EV B (HEV B) family and were distributed in three clusters.  相似文献   
48.
The immune system eliminates Chlamydia trachomatis infection through inflammation. However, uncontrolled inflammation can enhance pathology. In mice, TNF-related apoptosis-inducing ligand receptor (TRAIL-R), known for its effects on apoptosis, also regulates inflammation. In humans, the four homologues of TRAIL-R had never been investigated for effects on inflammation. Here, we examined whether TRAIL-R regulates inflammation during chlamydial infection. We examined TRAIL-R1 single nucleotide polymorphisms (SNPs) in an Ecuadorian cohort with and without C. trachomatis infections. There was a highly significant association for the TRAIL+626 homozygous mutant GG for infection vs no infection in this population. To confirm the results observed in the human population, primary lung fibroblasts and bone marrow-derived macrophages (BMDMs) were isolated from wildtype (WT) and TRAIL-R-deficient mice, and TRAIL-R1 levels in human cervical epithelial cells were depleted by RNA interference. Infection of BMDMs and primary lung fibroblasts with C. trachomatis strain L2, or the murine pathogen C. muridarum, led to higher levels of MIP2 mRNA expression or IL-1β secretion from TRAIL-R-deficient cells than WT cells. Similarly, depletion of TRAIL-R1 expression in human epithelial cells resulted in a higher level of IL-8 mRNA expression and protein secretion during C. trachomatis infection. We conclude that human TRAIL-R1 SNPs and murine TRAIL-R modulate the innate immune response against chlamydial infection. This is the first evidence that human TRAIL-R1 is a negative regulator of inflammation and plays a role in modulating Chlamydia pathogenesis.  相似文献   
49.
50.
Chlamydiae replicate in a vacuole within epithelial cells and commonly induce cell damage and a deleterious inflammatory response of unknown molecular pathogenesis. The chlamydial protease-like activity factor (CPAF) translocates from the vacuole to the cytosol, where it cleaves several cellular proteins. CPAF is synthesized as an inactive precursor that is processed and activated during infection. Here, we show that CPAF can be activated in uninfected cells by experimentally induced oligomerization, reminiscent of the activation mode of initiator caspases. CPAF activity induces proteolysis of cellular substrates including two novel targets, cyclin B1 and PARP, and indirectly results in the processing of pro-apoptotic BH3-only proteins. CPAF activation induces striking morphological changes in the cell and, later, cell death. Biochemical and ultrastructural analysis of the cell death pathway identify the mechanism of cell death as nonapoptotic. Active CPAF in uninfected human cells thus mimics many features of chlamydial infection, implicating CPAF as a major factor of chlamydial pathogenicity, Chlamydia-associated cell damage, and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号