首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
  2022年   3篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有73条查询结果,搜索用时 312 毫秒
21.
Many biological and chemical processes proceed through one or more intermediate steps. Statistical analysis of dwell-time distributions from single molecule trajectories enables the study of intermediate steps that are not directly observable. Here, we discuss the application of the randomness parameter and model fitting in determining the number of steps in a stochastic process. Through simulated examples, we show some of the limitations of these techniques. We discuss how shot noise and heterogeneity among the transition rates of individual steps affect how accurately the number of steps can be determined. Finally, we explore dynamic disorder in multistep reactions and show that the phenomenon can obscure the presence of rate-limiting intermediate steps.  相似文献   
22.
A complete, system-level understanding of biological processes requires comprehensive information on the kinetics and thermodynamics of the underlying biochemical reactions. A wide variety of structural, biochemical, and molecular biological techniques have led to a quantitative understanding of the molecular properties and mechanisms essential to the processes of life. Yet, the ensemble averaging inherent to these techniques limits us in understanding the dynamic behavior of the molecular participants. Recent advances in imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and record "molecular movies" that provide insight into their dynamics and reaction mechanisms. An important future goal is extending the applicability of single-molecule techniques to the study of larger, more complex multi-protein systems. In this review, the DNA replication machinery will be used as an example to illustrate recent progress in the development of various single-molecule techniques and its contribution to our understanding of the orchestration of multiple enzymatic processes in large biomolecular systems.  相似文献   
23.
Finite element modelling of contracting skeletal muscle   总被引:2,自引:0,他引:2  
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.  相似文献   
24.
O-alpha-d-Glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose (15), O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)-al pha, beta-L-rhamnopyranose (17), O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)- O-alpha-L-rhamnopyranosyl-(1----3)-D-ribitol (23), and O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)- O-alpha-L-rhamnopyranosyl-(1----4)-D-ribitol (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)- D-Rib-ol-(5-P----]n; 6A X = 3, 6B X = 4), have been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (3) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (4), and subsequent deallylation (----14) and debenzylation gave 15. Condensation of 14 with ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside (2) followed by debenzylation gave 17. Acetylation of 17 followed by removal of AcO-1, conversion into the imidate, coupling with 1,2,4,5-tetra-O-benzyl-D-ribitol (11), deacetylation, and debenzylation gave 23. Coupling of the imidate with 1-O-allyloxycarbonyl-2,3,5-tri-O-benzyl-D-ribitol (12) followed by deallyloxycarbonylation, deacetylation, and debenzylation yielded 27.  相似文献   
25.
Proliferating cell nuclear antigen (PCNA) plays an important role in eukaryotic genomic maintenance by topologically binding DNA and recruiting replication and repair proteins. The ring-shaped protein forms a closed circle around double-stranded DNA and is able to move along the DNA in a random walk. The molecular nature of this diffusion process is poorly understood. We use single-molecule imaging to visualize the movement of individual, fluorescently labeled PCNA molecules along stretched DNA. Measurements of diffusional properties as a function of viscosity and protein size suggest that PCNA moves along DNA using two different sliding modes. Most of the time, the clamp moves while rotationally tracking the helical pitch of the DNA duplex. In a less frequently used second mode of diffusion, the movement of the protein is uncoupled from the helical pitch, and the clamp diffuses at much higher rates.  相似文献   
26.

Background

Over the last decades important risk factors for gastrointestinal symptoms have shifted, which may have changed its population prevalence. The aim of this study was to assess the current prevalence of gastrointestinal symptoms, appraise associated factors and assess health-related quality of life in the general population.

Methods

A total of 51,869 questionnaires were sent to a representative sample of the Dutch adult general population in December 2008. Demographic characteristics, gastrointestinal symptoms, health-related quality of life, medication use and co-morbidity were reported. We used multivariable logistic regression analysis to determine factors associated with gastrointestinal symptoms.

Results

A total of 18,317 questionnaires were returned, and 16,758 were eligible for analysis. Prevalence of gastrointestinal symptoms was 26%. Most frequent symptoms were bloating (63%), borborygmi (60%) and flatulence (71%). Female gender (adjusted OR (aOR) 1.59, 95% CI 1.43–1.77), asthma/COPD (aOR 1.47, 95% CI 1.21–1.79), use of paracetamol (aOR 1.33, 95% CI 1.20–1.47), antidepressants (aOR 1.56, 95% CI 1.22–2.00) and acid-suppressive medication were independently associated with presence of gastrointestinal symptoms. Age over 65 years (aOR 0.75, 95% CI 0.65–0.87), and use of statins (aOR 0.75, 95% CI 0.61–0.93) were associated with a lower prevalence of gastrointestinal symptoms. Respondents with gastrointestinal symptoms had a lower mean health-related quality of life of 0.81 (SD = 0.21) compared to 0.92 (SD = 0.14) for persons without gastrointestinal symptoms (P<0.01).

Conclusions

Prevalence of gastrointestinal symptoms in the Dutch community is high and associated with decreased health-related quality of life.  相似文献   
27.
The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.  相似文献   
28.
29.
In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.  相似文献   
30.
The development of single-molecule tools has significantly impacted the way we think about biochemical processes. Watching a single protein in action allows us to observe kinetic details and rare subpopulations that are hidden in ensemble-averaging techniques. I will discuss here the pros and cons of the single-molecule approach in studying ligand binding in macromolecular systems and how these techniques can be applied to characterize the behavior of large multicomponent biochemical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号