首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1664篇
  免费   87篇
  1751篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   17篇
  2017年   19篇
  2016年   35篇
  2015年   37篇
  2014年   52篇
  2013年   113篇
  2012年   89篇
  2011年   93篇
  2010年   55篇
  2009年   65篇
  2008年   89篇
  2007年   90篇
  2006年   76篇
  2005年   101篇
  2004年   100篇
  2003年   101篇
  2002年   88篇
  2001年   37篇
  2000年   51篇
  1999年   41篇
  1998年   23篇
  1997年   30篇
  1996年   22篇
  1995年   15篇
  1994年   10篇
  1993年   15篇
  1992年   36篇
  1991年   23篇
  1990年   26篇
  1989年   19篇
  1988年   22篇
  1987年   15篇
  1986年   6篇
  1985年   14篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   8篇
  1972年   6篇
排序方式: 共有1751条查询结果,搜索用时 0 毫秒
991.
The enlarged spleen in liver cirrhosis is considered to play a role in the pathogenesis of portal hypertension, but the splenic hemodynamics and molecular mechanisms behind the phenomenon have not been elucidated. The present study aimed to examine the splenic hemodynamics associated with splenic microcirculation and congestion, and to determine the status of the endothelial nitric oxide synthase (eNOS) signaling pathway in the spleen of rats with liver cirrhosis. Liver cirrhosis was induced by bile duct ligation. In rats with bile duct ligation (BDL rats) and control rats, splenic blood flow was measured using a laser Doppler flowmeter, and splenic blood volume was measured using a near-infrared spectrophotometer. The expressions of eNOS and its upstream effectors, Akt, TNF-alpha and VEGF, in the spleen were also determined. Specific splenic blood flow was significantly decreased in BDL rats compared with control rats. Specific splenic blood volume was also decreased in BDL rats, while their total splenic blood volume, especially the deoxygenated volume, was significantly increased. The expressions of phosphorylated and total eNOS, and the eNOS phosphorylation ratio, were all significantly decreased in the spleen of BDL rats. The Akt phosphorylation ratio and TNF-alpha concentration were also decreased in the spleen of BDL rats although the expression of VEGF was increased. These findings suggest that the eNOS signaling pathway is suppressed in the spleen of cirrhotic rats, and may contribute to the measured decreases in specific blood flow and volume in the spleen of liver cirrhosis. Determination of the factors influencing the suppression of eNOS in the spleen may shed light on how liver cirrhosis results in hypodynamic intrasplenic circulation.  相似文献   
992.
Plants utilize isoprene emission as a thermotolerance mechanism   总被引:1,自引:0,他引:1  
Isoprene is a volatile compound emitted from leaves of many plant species in large quantities, which has an impact on atmospheric chemistry due to its massive global emission rate (5 x 10(14) carbon g year(-1)) and its high reactivity with the OH radical, resulting in an increase in the half-life of methane. Isoprene emission is strongly induced by the increase in isoprene synthase activity in plastids at high temperature in the day time, which is regulated at its gene expression level in leaves, while the physiological meaning of isoprene emission for plants has not been clearly demonstrated. In this study, we have functionally overexpressed Populus alba isoprene synthase in Arabidopsis to observe isoprene emission from transgenic plants. A striking difference was observed when both transgenic and wild-type plants were treated with heat at 60 degrees C for 2.5 h, i.e. transformants revealed clear heat tolerance compared with the wild type. High isoprene emission and a decrease in the leaf surface temperature were observed in transgenic plants under heat stress treatment. In contrast, neither strong light nor drought treatments showed an apparent difference. These data suggest that isoprene emission plays a crucial role in a heat protection mechanism in plants.  相似文献   
993.
994.
Molecular Biology Reports - The appearance quality of the eggplant (Solanum melongena L.) fruit is an important trait that influences its commercial value. It is known that quality traits such as...  相似文献   
995.
996.
997.
To identify appropriate candidates for aggressive treatment such as radical prostatectomy or radiation therapy of localized prostate cancer (PCa), novel predictive biomarkers of PCa aggressiveness are essential. Core2 β-1,6-N-acetylglucosaminyltransferase-1 (GCNT1) is a key enzyme that forms core 2-branched O-glycans. Its expression is associated with the progression of several cancers. We established a mouse IgG monoclonal antibody (mAb) against GCNT1 and examined the relationship of GCNT1 expression to the clinicopathological status of PCa. Paraffin-embedded PCa specimens were analyzed by immunohistochemistry for GCNT1 expression using a newly established mouse anti-GCNT1 mAb by ourselves. GCNT1-positive tumor showed significantly higher Gleason score and larger tumor volume. The number of GCNT1-positive cases was significantly lower in cases of organ-confined disease than in cases of extracapsular extension. GCNT1-negative tumors were associated with significantly better prostate-specific antigen (PSA)-free survival compared with GCNT1-positive tumors. Multivariate analysis revealed that detection of GCNT1 expression was an independent risk factor for PSA recurrence. We established new methods for GCNT1 detection from PCa specimens. Immunoblotting was used to examine post-digital rectal examination (DRE) urine from PCa patients. Over 90% of GCNT1-positive PCa patients with high concentrations of PSA showed extracapsular extension. In conclusion, GCNT1 expression closely associates with the aggressive potential of PCa. Further research aims to develop GCNT1 detection in post-DRE urine as a marker for PCa aggressiveness.  相似文献   
998.
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.  相似文献   
999.
Various alterations underlying acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been described. Although treatment strategies specific for these mechanisms are under development, cytotoxic agents are currently employed to treat many patients following failure of EGFR-TKIs. However, the effect of TKI resistance on sensitivity to these cytotoxic agents is mostly unclear. This study investigated the sensitivity of erlotinib-resistant tumor cells to five cytotoxic agents using an in vitro EGFR-TKI-resistant model. Four erlotinib-sensitive lung adenocarcinoma cell lines and their resistant derivatives were tested. Of the resistant cell lines, all but one showed a similar sensitivity to the tested drugs as their parental cells. HCC4006ER cells with epithelial mesenchymal transition features acquired resistance to the three microtubule-targeting agents, docetaxel, paclitaxel and vinorelbine, but not to cisplatin and gemcitabine. Gene expression array and immunoblotting demonstrated that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated in HCC4006ER cells. ABCB1 knockdown by siRNA partially restored sensitivity to the anti-microtubule agents but not to erlotinib. Moreover, the histone deacetylase inhibitor entinostat sensitized HCC4006ER cells to anti-microtubule agents through ABCB1 suppression. Our study indicates that sensitivity of tumor cells to cytotoxic agents in general does not change before and after failure of EGFR-TKIs. However, we describe that two different molecular alterations confer acquired resistance to EGFR-TKIs and cytotoxic agents, respectively. This phenomenon should be kept in mind in selection of subsequent therapy after failure of EGFR-TKIs.  相似文献   
1000.
It is widely recognized that stimuli-responsive nanostructures play a promising role in nanodevices for medical treatments and experimental tools. We have designed and constructed a basic structure which controls the distance between two termini domains through temperature reversibility. Our structure, shaped like a bouquet, is composed of two proteins, alpha-helix and elastin-like protein (ELP). Alpha-helices align and bundle the ELP while ELP twists and forms a fiber-like structure at warm temperatures. This ELP conformational change alters the distance between the structure termini at the site opposite the alpha-helix. We connected enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP) at the structure's two termini to evaluate the distance using fluorescence resonance energy transfer (FRET) efficiency. These proteins spontaneously formed a complex which decreased the distance between the two fluorescent proteins located at its termini, at physiologically relevant temperatures. This change was repeated with complete reversibility (n = 5).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号