首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   16篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   11篇
  2015年   18篇
  2014年   18篇
  2013年   24篇
  2012年   14篇
  2011年   18篇
  2010年   14篇
  2009年   8篇
  2008年   34篇
  2007年   29篇
  2006年   27篇
  2005年   31篇
  2004年   23篇
  2003年   19篇
  2002年   19篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1978年   2篇
排序方式: 共有380条查询结果,搜索用时 156 毫秒
171.
Much progress has been made in our understanding of photoperiodic flowering of rice and the mechanisms underlying short-day (SD) promotion and long-day (LD) repression of floral induction. In this study, we identified and characterized the Ef7 gene, one of the rice orthologs of Arabidopsis EARLY FLOWERING 3 (ELF3). The ef7 mutant HS276, which was induced by γ-irradiation of the japonica rice cultivar 'Gimbozu', flowers late under both SD and LD conditions. Expression analyses of flowering time-related genes demonstrated that Ef7 negatively regulates the expression of Ghd7, which is a repressor of the photoperiodic control of rice flowering, and consequently up-regulates the expression of the downstream Ehd1 and FT-like genes under both SD and LD conditions. Genetic analyses with a non-functional Ghd7 allele provided further evidence that the delayed flowering of ef7 is mediated through the Ghd7 pathway. The analysis of light-induced expression of Ghd7 revealed that the ef7 mutant was more sensitive to red light than the wild-type plant, but the gate of Ghd7 expression was unchanged. Thus, our results show that Ef7 functions as a floral promoter by repressing Ghd7 expression under both SD and LD conditions.  相似文献   
172.
The cost of the lignocellulose-hydrolyzing enzymes used in the saccharification process of ethanol production from biomass accounts for a relatively high proportion of total processing costs. Cell surface engineering technology has facilitated a reduction in these costs by integrating saccharification and fermentation processes into a recombinant microbe strain expressing heterologous enzymes on the cell surface. We constructed a recombinant Saccharomyces cerevisiae that not only hydrolyzed hemicelluloses by codisplaying endoxylanase from Trichoderma reesei, β-xylosidase from Aspergillus oryzae, and β-glucosidase from Aspergillus aculeatus but that also assimilated xylose through the expression of xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. The recombinant strain successfully produced ethanol from rice straw hydrolysate consisting of hemicellulosic material containing xylan, xylooligosaccharides, and cellooligosaccharides without requiring the addition of sugar-hydrolyzing enzymes or detoxication. The ethanol titer of the strain was 8.2g/l after 72h fermentation, which was approximately 2.5-fold higher than that of the control strain. The yield (grams of ethanol per gram of total sugars in rice straw hydrolysate consumed) was 0.41g/g, which corresponded to 82% of the theoretical yield. The cell surface-engineered strain was thus highly effective for consolidating the process of ethanol production from hemicellulosic materials.  相似文献   
173.
Steroidal nuclear receptors (NRs) have been acknowledged as a target binding protein of so-called endocrine disruptors. It is therefore necessary to develop an efficient assay system for screening these endocrine-disrupting chemicals. We here describe the first exemplification of a direct measure of fluorescence intensity for a binding assay of NRs. We designed and synthesized a series of conjugates of 17alpha-ethinylcarboxyestradiol with carboxyfluorescein, both carboxyl groups of which were cross-linked with alpha,omega-diaminoalkanes. The resulting fluorescein-linked estradiol derivatives E2(n)cF (n=2, 4, 6, 8, 10 and 12) were evaluated for their fluorescence and receptor-binding characteristics. E2(4)cF and E2(8)cF exhibited the sufficient binding affinity to the recombinant estrogen receptor (ER) in the radiolabel binding assay using [(3)H]17beta-estradiol, and showed excellent fluorescent characteristics in the fluorescence measurements with and without ER. They exhibited sufficiently large specific binding characteristics with adequate K(d)- and B(max)-values. When these fluorescent ligands were used as a tracer for the binding assay against the ER, assay data of various compounds were shown to be compatible with those obtained from the ordinary binding assay using [(3)H]17beta-estradiol. The present study clearly shows that measurement of fluorescence intensity, instead of fluorescence polarization, affords an adequate receptor-binding assay system.  相似文献   
174.
175.
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 Å resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the β subunit is essentially involved in substrate binding and that the α subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the β subunit in the hydrophobic groove have shown that βIle107 has a critical role in forming the hydrophobic groove.  相似文献   
176.

Background

Diabetes mellitus is considered an important risk factor for cardiovascular diseases. High hemoglobin A1c (HbA1c) levels, which indicate poor glycemic control, have been associated with occurrence of cardiovascular diseases. There are few parameters which can predict cardiovascular risk in patients with well-controlled diabetes. Low 1,5-anhydroglucitol (1,5-AG) levels are considered a clinical marker of postprandial hyperglycemia. We hypothesized that low 1,5-AG levels could predict long-term mortality in acute coronary syndrome (ACS) patients with relatively low HbA1c levels.

Methods

The present study followed a retrospective observational study design. We enrolled 388 consecutive patients with ACS admitted to the cardiac intensive care unit at the Juntendo University Hospital from January 2011 to December 2013. Levels of 1,5-AG were measured immediately before emergency coronary angiography. Patients with early stent thrombosis, no significant coronary artery stenosis, malignancy, liver cirrhosis, a history of gastrectomy, current steroid treatment, moderately to severely reduced kidney function (estimated glomerular filtration rate < 45 ml/min/1.73 m2; chronic kidney disease stage 3B, 4, and 5), HbA1c levels ≥ 7.0%, and those who received sodium glucose co-transporter 2 inhibitor therapy were excluded.

Results

During the 46.9-month mean follow-up period, nine patients (4.5%) died of cardiovascular disease. The 1,5-AG level was significantly lower in the cardiac death group compared with that in the survivor group (12.3 ± 5.3 vs. 19.2 ± 7.7 µg/ml, p < 0.01). Kaplan–Meier survival analysis showed that low 1,5-AG levels were associated with cardiac mortality (p = 0.02). Multivariable Cox regression analysis showed that 1,5-AG levels were an independent predictor of cardiac mortality (hazard ratio 0.76; 95% confidence interval 0.41–0.98; p = 0.03).

Conclusion

Low 1,5-AG levels, which indicate postprandial hyperglycemia, predict long-term cardiac mortality even in ACS patients with HbA1c levels < 7.0%.
  相似文献   
177.
178.
The N-glycan structures of the Lens culinaris agglutinin (LCA)-reactive fraction of alpha-fetoprotein (AFP-L3), a tumor marker of hepatocellular carcinomas (HCC), were analyzed in relationship to glycosyltransferases and LCA-affinity electrophoresis. Using HPLC and MALDI-TOF MS, we determined the N-glycan structures of AFP from HCC cell lines, and demonstrated they were affected by N-acetylglucosaminyltransferase III and fucosyltransferase VIII, but not by N-acetylglucosaminyltransferase V. Moreover, we identified the N-glycan structures of AFP in HCC patients.  相似文献   
179.
Ohtaki A  Nakano Y  Iizuka R  Arakawa T  Yamada K  Odaka M  Yohda M 《Proteins》2008,70(4):1167-1174
Pyrococcus horikoshii OT3 aspartate racemase (PhAspR) catalyzes the interconversion between L- and D-aspartate. The X-ray structure of PhAspR revealed a pseudo mirror-symmetric distribution of the residues around its active site, which is very reasonable for its chiral substrates, L-aspartate and D-aspartate. In this study, we have determined the crystal structure of an inactive mutant PhAspR complexed with a citric acid (Cit) at a resolution of 2.0 A. Cit contains the substrate analogue moieties of both L- and D-aspartate and exhibits a low competitive inhibition activity against PhAspR. In the structure, Cit binds to the catalytic site of PhAspR, which induced the conformational change to close the active site. The distance between the thiolates was estimated to be 7.4 A, representing a catalytic state and the substrate binding modes of PhAspR. Two conserved basic residues, Arg48 and Lys164, seem to be indispensable for PhAspR activity. Arg48 is thought to be responsible for recognizing carboxyl groups of the substrates L-/D-aspartates and stabilizing a reaction intermediate, and Lys164 is responsible for stabilizing a closed state structure. In this structure, the L-aspartate moiety of Cit is likely to take the substrate position of the PhAspR-substrate complex, which is very similar to that of Glutamate racemase. There is also another possibility that the two substrate analogue moieties of the bound Cit reflect the binding modes of both L- and D-aspartates. Based on the PhAspR-Cit complex structure, the reaction mechanism of aspartate racemase was elucidated.  相似文献   
180.
Chloroplast movement in response to light has been known more than 100 years. Chloroplasts move towards weak light and move away from strong light. Dark-induced relocation, called dark positioning, has also been shown. However, the effects of other stimuli on chloroplast movement have not been well characterized. Here we studied low temperature-induced chloroplast relocation (termed cold positioning) in prothallial cells of the gametophytes of the fern Adiantum capillus-veneris. Under weak light chloroplasts in prothallial cells accumulated along the periclinal wall at 25 degrees C, but they moved towards anticlinal walls when the prothalli were subsequently transferred to 4 degrees C. A temperature shift from 25 degrees to 10 degrees C or lower was enough to induce cold positioning, and high-intensity light enhanced the response. Nuclei also relocated from the periclinal position (a position along periclinal walls) to the anticlinal position (a position along anticlinal walls) under cold temperature, whereas mitochondria did not. Cold positioning was not observed in mutant fern gametophytes defective of the blue light photoreceptor, phototropin 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号