首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   53篇
  2021年   9篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2016年   6篇
  2015年   13篇
  2014年   11篇
  2013年   31篇
  2012年   23篇
  2011年   24篇
  2010年   11篇
  2009年   10篇
  2008年   22篇
  2007年   21篇
  2006年   16篇
  2005年   28篇
  2004年   15篇
  2003年   17篇
  2002年   16篇
  2001年   24篇
  2000年   13篇
  1999年   12篇
  1998年   9篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1991年   11篇
  1990年   7篇
  1989年   12篇
  1988年   12篇
  1987年   6篇
  1986年   8篇
  1985年   11篇
  1984年   10篇
  1982年   9篇
  1981年   5篇
  1980年   3篇
  1979年   10篇
  1978年   10篇
  1975年   9篇
  1974年   23篇
  1973年   11篇
  1972年   12篇
  1971年   4篇
  1970年   11篇
  1969年   8篇
  1968年   6篇
  1967年   4篇
  1966年   5篇
  1965年   4篇
排序方式: 共有595条查询结果,搜索用时 31 毫秒
81.
Cell morphogenesis is a complex process that relies on a diverse array of proteins and pathways. We have identified a transglutaminase-like protein (Cyk3p) that functions in fission yeast morphogenesis. The phenotype of a cyk3 knockout strain indicates a primary role for Cyk3p in cytokinesis. Correspondingly, Cyk3p localizes both to the actomyosin contractile ring and the division septum, promoting ring constriction, septation, and subsequent cell separation following ring disassembly. In addition, Cyk3p localizes to polarized growth sites and plays a role in cell shape determination, and it also appears to contribute to cell integrity during stationary phase, given its accumulation as dynamic puncta at the cortex of such cells. Our results and the conservation of Cyk3p across fungi point to a role in cell wall synthesis and remodeling. Cyk3p possesses a transglutaminase domain that is essential for function, even though it lacks the catalytic active site. In a wider sense, our work illustrates the physiological importance of inactive members of the transglutaminase family, which are found throughout eukaryotes. We suggest that the proposed evolution of animal transglutaminase cross-linking activity from ancestral bacterial thiol proteases was accompanied by the emergence of a subclass whose function does not depend on enzymatic activity.  相似文献   
82.
83.
84.
Novokinin (Arg-Pro-Leu-Lys-Pro-Trp), which has been designed based on the structure of ovokinin (2-7), significantly reduces the systolic blood pressure at a dose of 100 microg/kg after oral administration in spontaneously hypertensive rats (SHRs). In this study, we generated a transgenic soybean which accumulates novokinin. A vector encoding a modified beta-conglycinin alpha' subunit (4novokinin-alpha') in which four novokinin sequences have been incorporated by site-directed mutagenesis was introduced into somatic embryos by whisker-mediated gene transformation to produce a transgenic soybean. The 4novokinin-alpha' occupied 0.5% of total soluble protein and 5% of the beta-conglycinin alpha' subunit in the transgenic soybean seeds. Protein extracted from the transgenic soybean reduced systolic blood pressure after single oral administration in SHRs at a dose of 0.15 g/kg. Defatted flour from the transgenic soybean also reduced the systolic blood pressure at a dose of 0.25 g/kg. Thus, the 4novokinin-alpha' produced in soybean exhibited an anti-hypertensive activity in SHRs after oral administration.  相似文献   
85.
86.
A swine resource family was constructed at the National Institute of Animal Industry, Japan, in order to determine the genetic regions responsible for economically important traits, including fetus development. To identify genes expressed in the early stage of embryo development, we cataloged and mapped genes expressed in a 28-day-old normal pig embryo. In this effort, we have mapped 64 genes, which have map information in human genome onto a swine radiation hybrid (RH) map, IMpRH. These mappings provided additional chromosomal homologies between swine and human to improve the comparative map between the two species. The distribution of the genes assigned to swine chromosomes are as follows: 9 genes were assigned on SSC6; 6 genes each assigned on SSC5 and SSC14; 5 genes each assigned on SSC3, SSC4, and SSC8; 4 genes each assigned on SSC1, SSC7, SSC9, and SSC15; 3 genes each assigned on SSC2, SSC13 and SSCX; and 1 gene each assigned on SSC10, SSC11, and SSC16. Moreover, the present findings revealed 18 new chromosomal homologies between pig and human. Briefly, SSC3 regions were indicated to correspond with HSA1 and HSA10; SSC4 with HSA6; SSC5 with HSA2, HSA15, and HSA16; SSC6 with HSA3, HSA6, and HSA20; SSC7 with HSA11; SSC8 with HSA3, HSA6, and HSA7; SSC9 with HSA8; SSC13 with HSA1; SSC14 with HSA13; SSC15 with HSA19; SSC16 with HSA9. Received: 19 December 2000 / Accepted: 13 March 2001  相似文献   
87.
Inosine triphosphate (ITP) does not serve as a substrate for myosin light-chain kinase from gizzard muscle. That is to say, myosin light-chain is not phosphorylated in ITP media. Nevertheless, at pH 6.8, 1 mM or 5 mM ITP induces superprecipitation of skeletal acto-gizzard myosin. The ITP-induced superprecipitation occurs in the absence or presence of calcium ions, and regardless of whether gizzard myosin is phosphorylated or not. On the other hand, at pH 8, 5 MM ITP induces practically no superprecipitation of skeletal acto-gizzard unphosphorylated myosin, whereas it does induce a strong superprecipitation of skeletal acto-gizzard phosphorylated myosin. Superprecipitation is also independent of the presence or absence of calcium ions.  相似文献   
88.
Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in somatosensory evoked potentials and event-related potentials. The aim of this study was to clarify whether specific athletic training also affects somatosensory Nogo potentials related to the inhibition of movements. The Nogo potentials were recorded at nine cortical electrode positions (Fz, Cz, Pz, F3, F4, C3, C4, P3 and P4) in 12 baseball players (baseball group) and in 12 athletes in sports, such as track and field events and swimming, that do not require response inhibition, such as batting for training or performance (sports group). The Nogo potentials and Go/Nogo reaction times (Go/Nogo RTs) were measured under a somatosensory Go/Nogo paradigm in which subjects were instructed to rapidly push a button in response to stimulus presentation. The Nogo potentials were obtained by subtracting the Go trial from the Nogo trial. The peak Nogo-N2 was significantly shorter in the baseball group than that in the sports group. In addition, the amplitude of Nogo-N2 in the frontal area was significantly larger in the baseball group than that in the sports group. There was a significant positive correlation between the latency of Nogo-N2 and Go/Nogo RT. Moreover, there were significant correlations between the Go/Nogo RT and both the amplitude of Nogo-N2 and Nogo-P3 (i.e., amplitude of the Nogo-potentials increases with shorter RT). Specific athletic training regimens may induce neuroplastic alterations in sensorimotor inhibitory processes.  相似文献   
89.
90.
Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers’ protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号