首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2701篇
  免费   151篇
  2023年   6篇
  2022年   25篇
  2021年   49篇
  2020年   22篇
  2019年   29篇
  2018年   41篇
  2017年   39篇
  2016年   49篇
  2015年   88篇
  2014年   84篇
  2013年   184篇
  2012年   169篇
  2011年   177篇
  2010年   106篇
  2009年   107篇
  2008年   180篇
  2007年   194篇
  2006年   167篇
  2005年   146篇
  2004年   202篇
  2003年   153篇
  2002年   140篇
  2001年   35篇
  2000年   43篇
  1999年   33篇
  1998年   40篇
  1997年   36篇
  1996年   21篇
  1995年   22篇
  1994年   12篇
  1993年   21篇
  1992年   28篇
  1991年   25篇
  1990年   14篇
  1989年   19篇
  1988年   21篇
  1987年   13篇
  1986年   26篇
  1985年   9篇
  1984年   9篇
  1983年   11篇
  1982年   10篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1976年   6篇
  1975年   6篇
  1969年   2篇
  1967年   3篇
排序方式: 共有2852条查询结果,搜索用时 15 毫秒
961.
Spire is an actin nucleator that initiates actin polymerization at a specific place in the cell. Similar to the Arp2/3 complex, spire was initially considered to bind to the pointed end of the actin filament when it generates a new actin filament. Subsequently, spire was reported to be associated with the barbed end (B-end); thus, there is still no consensus regarding the end with which spire interacts. Here, we report direct evidence that spire binds to the B-end of the actin filament, under conditions where spire accelerates actin polymerization. Using electron microscopy, we visualized the location of spire bound to the filament by gold nanoparticle labeling of the histidine-tagged spire, and the polarity of the actin filament was determined by image analysis. In addition, our results suggest that multiple spires, linked through one gold nanoparticle, enhance the acceleration of actin polymerization. The B-end binding of spire provides the basis for understanding its functional mechanism in the cell.  相似文献   
962.
The centrosome is a cytoplasmic organelle which duplicates once during each cell cycle, and the presence of excess centrosomes promote chromosome instability through chromosome missegregation following cytokinesis. Ionizing radiation (IR) can induce extra centrosomes by permitting the continuation of CDK2/Cyclin-A/E-mediated centrosome duplication when cells are arrested in the cell cycle after irradiation. The work described here shows that, in addition to IR, extra centrosomes were induced in human U2OS and mouse NIH3T3 cells after treatment with agents which include DNA adduct-forming chemicals: benzopyrene (BP), 4-nitroquinoline 1-oxide (4NQO), a DNA cross linker: cis-diamminedichloro-platinum (cisplatin), topoisomerase inhibitors: camptothecin, etoposide, genistein, and ultra-violet light (UV). These agents were divided into two categories with respect to the regulation of p21, which is an inhibitor of CDK2/Cyclin-A/E: specifically, p21 was up-regulated by an IR exposure and treatment with topoisomerase inhibitors. However, UV, BP, 4NQO and cisplatin down-regulated p21 below basal levels. When cells were irradiated with IR in combination with all of these agents, except genistein, enhanced induction of extra centrosomes was observed, regardless of the nature of p21 expression. Genistein significantly suppressed the frequency of IR-induced extra centrosomes in a dose-dependent manner, and 20μg/ml of genistein reduced this frequency to 66%. Consistent with this, genistein substantially up-regulated p21 expression over the induction caused by IR alone, while other agents down-regulated or marginally affected this. This suggests the inhibitory effect of genistein on the induction of extra centrosomes occurs through the inactivation of CDK2/Cyclin-A/E via p21 up-regulation. This hypothesis is supported by the observation that p21 knockdown with siRNA reduced the activity of CDK2/Cyclin-A/E and restored the enhanced effect of a combined treatment with genistein and IR. These results demonstrate the preventive effect of genistein and a crucial role for p21 in IR-induced excess centrosomes.  相似文献   
963.
Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to β-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect β-glucosides and other substances might be shared and ancestral among mammals.  相似文献   
964.
Changes in cell shape that occur in many cellular processes are thought to arise from polymerization of actin filaments near the cell membrane. End-to-end annealing of actin filaments is believed to play only a minor role in this process, as annealing in solution was shown to be a slow process, which is not typical for a bimolecular reaction, its rate constant decreasing over time, being inversely proportional to the filament length. Furthermore, in vitro studies on f-actin solutions were found to display an exponential steady-state length distribution. In the cell, many physiologically important parameters, such as mechanical strength or viscoelastic response are a direct function of the physical properties of the underlying actin cytoskeleton, such as actin filament length distribution and dynamics. How the underlying physical parameters of the actin cytoskeleton may be influenced by the cell surface or molecular crowding remains poorly understood. Using total internal reflection fluorescence (TIRF) microscopy we reinvestigated actin end-to-end annealing in vitro in a more realistic environment. We studied the process near a hydrophilic surface together with crowding agents, in order to mimic the physiological media near the cell membrane, which has substantial amounts of macromolecules present. We find that actin end-to-end annealing changes in three ways near a crowded hydrophilic surface as compared to solution. First the annealing rate becomes a factor of 20 faster than in solution. Second the rate of annealing becomes typical of a bimolecular reaction, shows no length dependence and is basically just a function of the square of the concentration of ends. Lastly the length distribution is Gaussian throughout the entire annealing process. This implicates that dynamic rearrangement of actin filaments by annealing near the leading edge of the cell, could change physical parameters like the mechanical response and contribute significantly to cell motility.  相似文献   
965.
Gasic K  Korban SS 《Planta》2007,226(5):1277-1285
Phytochelatins (PCs) are heavy metal binding peptides that play an important role in sequestration and detoxification of heavy metals in plants. In this study, our goal was to develop transgenic plants with increased tolerance for and accumulation of heavy metals from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A 35S promoter fused to a FLAG–tagged AtPCS1 cDNA was expressed in Indian mustard, and transgenic lines, designated pc lines, were evaluated for tolerance to and accumulation of Cd and Zn. Transgenic plants with moderate AtPCS1 expression levels showed significantly higher tolerance to Cd and Zn stress, but accumulated significantly less Cd and Zn than wild type plants in both shoot and root tissues. However, transgenic plants with highest expression of the transgene did not exhibit enhanced Cd and Zn tolerance. Shoots of Cd-treated pc plants had significantly higher levels of phytochelatins and thiols than wild-type plants. Significantly lower concentrations of gluthatione in Cd-treated shoot and root tissues of transgenic plants were observed. Moderate expression levels of phytochelatin synthase improved the ability of Indian mustard to tolerate certain levels of heavy metals, but at the same time did not increase the accumulation potential for Cd and Zn.  相似文献   
966.
967.
Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation   总被引:5,自引:0,他引:5  
The ST2 gene produces a soluble secreted form and a transmembrane form, referred to as soluble ST2 and ST2L, respectively. A recent study has reported that interleukin (IL)-33 is a specific ligand of ST2L and induces production of T helper type 2 (Th2) cytokines. Although soluble ST2 is highly produced in sera of asthmatic patients and plays a critical role for production of Th2 cytokines, the function of soluble ST2 in relation to IL-33 signaling remains unclear. Here we show antagonistic effects of soluble ST2 on IL-33 signaling using a murine thymoma EL-4 cells stably expressing ST2L and a murine model of asthma. Soluble ST2 directly bound to IL-33 and suppressed activation of NF-kappaB in EL-4 cells stably expressing ST2L, suggesting that the complex of soluble ST2 and IL-33 fails to bind to ST2L. In a murine model of asthma, pretreatment with soluble ST2 reduced production of IL-4, IL-5, and IL-13 from IL-33-stimulated splenocytes. These results indicate that soluble ST2 acts as a negative regulator of Th2 cytokine production by the IL-33 signaling. Our study provides a molecular mechanism wherein soluble ST2 modulates the biological activity of IL-33 in allergic airway inflammation.  相似文献   
968.
Three levels of hamadryas social structure—the one male unit (OMU), the band, and the troop—have been observed at all sites studied, but a fourth—the clan—has been observed at only one site, Erer-Gota, Ethiopia, during a longitudinal check of the dispersion of identified individuals. The clan is important since it appears to provide the basis for male philopatry, although comparative data is needed from other sites to confirm this. We studied a huge commensal group of hamadryas baboons (over 600 animals) in Saudi Arabia. We put ear tags on baboons between 1998 and 2004 and analyzed social structure, relying on the interactions of these tagged animals by focusing especially on their dispersal patterns from OMUs. OMU membership tended to be looser than that of the Ethiopian hamadryas. Females tended to shift between OMUs on an individual basis in our study group, whereas the collapse of an OMU was a major occasion of adult female transfer in Ethiopia. We found neither stable bands (a “band” in our study group was defined as a regional assemblage of OMUs) nor clans that lasted for several years. Some OMUs moved and transferred into neighboring areas over both the short and long term. Further, some post-adolescent males appeared to move out of the study area. The ratio of adult females in an OMU in our study group was larger than for any other documented study site, and this may be the reason for enhanced female transfer between OMUs. A large proportion of the adolescent females showed no clear membership to OMUs, and no “initial units” (commonly observed in Ethiopia) were discernible. The ease with which young males acquired adult females at the study site must have disrupted the formation of a clan, a “male-bonded society.”  相似文献   
969.
970.
In order to evaluate genotypic variation, we measured leaf photosynthetic rate (Pn) and its associated factors for the rice diversity research set of germplasm (RDRS) selected from the Genebank in National Institute of Agrobiological Sciences (NIAS). Pn showed large genotypic variation from 11.9 to 32.1 micromol m(-2 )s(-1). The variation in stomatal conductance to CO2 (Gs) explained about 50% of that in Pn, while that in nitrogen concentration (N) in leaves explained about 35%. The genotype group which mainly consists of aus type indica tended to have higher Gs, and the genotype group which corresponds to japonica had a higher nitrogen concentration (N) in leaves. The relationships of Pn with Gs and N were not significantly different among genotype groups, suggesting photosynthetic efficiencies are similar among genotype groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号