首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   50篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   12篇
  2012年   19篇
  2011年   18篇
  2010年   11篇
  2009年   9篇
  2008年   15篇
  2007年   17篇
  2006年   18篇
  2005年   5篇
  2004年   12篇
  2003年   11篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1992年   6篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   6篇
  1976年   4篇
  1975年   2篇
  1972年   6篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1967年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有290条查询结果,搜索用时 31 毫秒
91.
Photosystem II (PSII) of oxygen-evolving cyanobacteria, algae, and land plants mediates electron transfer from the Mn4Ca cluster to the plastoquinone pool. It is a dimeric supramolecular complex comprising more than 30 subunits per monomer, of which 16 are bitopic or peripheral, low-molecular-weight components. Directed inactivation of the plastid gene encoding the low-molecular-weight peptide PsbTc in tobacco (Nicotiana tabacum) does not prevent photoautotrophic growth. Mutant plants appear normal green, and levels of PSII proteins are not affected. Yet, PSII-dependent electron transport, stability of PSII dimers, and assembly of PSII light-harvesting complexes (LHCII) are significantly impaired. PSII light sensitivity is moderately increased and recovery from photoinhibition is delayed, leading to faster D1 degradation in ΔpsbTc under high light. Thermoluminescence emission measurements revealed alterations of midpoint potentials of primary/secondary electron-accepting plastoquinone of PSII interaction. Only traces of CP43 and no D1/D2 proteins are phosphorylated, presumably due to structural changes of PSII in ΔpsbTc. In striking contrast to the wild type, LHCII in the mutant is phosphorylated in darkness, consistent with its association with PSI, indicating an increased pool of reduced plastoquinone in the dark. Finally, our data suggest that the secondary electron-accepting plastoquinone of PSII site, the properties of which are altered in ΔpsbTc, is required for oxidation of reduced plastoquinone in darkness in an oxygen-dependent manner. These data present novel aspects of plastoquinone redox regulation, chlororespiration, and redox control of LHCII phosphorylation.  相似文献   
92.
The high-concentration CO2-requiring mutant N5 of Synechococcus sp. PCC 7942 was obtained by the insertion of a kanamycin-resistant gene at the EcoRI site, 12.4 kb upstream of rbc. The mutant is unable to accumulate inorganic carbon internally and exhibits very low apparent photosynthetic affinity for inorganic carbon but a photosynthetic Vmax similar to that of the wild type. Sequence and northern analyses showed that the insertion inactivated a gene highly homologous to ndhB, encoding subunit II of NADH dehydrogenase in Synechocystis sp. PCC 6803 (T. Ogawa [1991] Proc Natl Acad Sci USA 88: 4275-4279). When the mutant and the wild-type cells were exposed to 5% CO2 in air, their photosynthetic electron transfer capabilities, as revealed by fluorescence and thermoluminescence measurements, were similar. On the other hand, a significant decrease in variable fluorescence was observed when the mutant (but not the wild-type) cells were exposed to low CO2 under continuous light. The same treatment also resulted in a shift (from 38-27 degrees C) in the temperature at which the maximal thermoluminescence emission signal was obtained in the mutant but not in the wild type. These results may indicate that subunit II of NADH dehydrogenase is essential for the functional operation of the photosynthetic electron transport in Synechococcus under low but not high levels of CO2. We suggest that the inability to accumulate inorganic carbon under air conditions stems from disrupture of electron transport in this mutant.  相似文献   
93.
Photoinhibition of Photosystem II in unicellular algae in vivo is accompanied by thylakoid membrane energization and generation of a relatively high pH as demonstrated by 14C-methylamine uptake in intact cells. Presence of ammonium ions in the medium causes extensive swelling of the thylakoid membranes in photoinhibited Chlamydomonas reinhardtii but not in Scenedesmus obliquus wild type and LF-1 mutant cells. The rise in pH and the related thylakoid swelling do not occur at light intensities which do not induce photoinhibition. The rise in pH and membrane energization are not induced by photoinhibitory light in C. reinhardtii mutant cells possessing an active Photosystem II but lacking cytochrome b6/f, plastocyanin or Photosystem I activity and thus being unable to perform cyclic electron flow around Photosystem I. In these mutants the light-induced turnover of the D1 protein of Reaction Center II is considerably reduced. The high light-dependent rise in pH is induced in the LF-1 mutant of Scenedesmus which can not oxidize water but otherwise possesses an active Reaction Center II indicating that PS II-linear electron flow activity and reduction of plastoquinone are not required for this process. Based on these results we conclude that photoinhibition of Photosystem II activates cyclic electron flow around Photosystem I which is responsible for the high membrane energization and pH rise in cells exposed to excessive light intensities.Abbreviations cyt b6/f cytochrome b6/f - Diuron 3-(3,4-dichlorophenyl)-1 dimethyl urea - QB the secondary quinone acceptor of reaction center II - DNP 2,4,Dinitrophenol - FCCP carbonyl cyanide trifluoromethoxy phenylhydrazone - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis  相似文献   
94.
The light-induced inactivation of the photochemical reaction center II (RCII) of oxygenic chloroplasts (photoinhibition) was investigated in cells and isolated thylakoids of the green alga Chlamydomonas reinhardtii. The process is resolved into a reversible conformational change followed by an irreversible modification of RCII D1 protein. The light-induced changes in vivo persisted in isolated thylakoids. The first step is characterized by (i) destabilization of the secondary acceptor semiquinone anion, Q-B, bound to the D1 protein. This is demonstrated by a reduction in the activation energy of S2,3Q-B charge recombination as measured by the thermoluminescence technique; and (ii) a rise in the intrinsic fluorescence and a decrease of the maximal fluorescence. Unoccupancy of the QB site by plastoquinone partially protected RCII against the light-induced destabilization of Q-B. The extent of charge separation (P+680Q-A) was not affected. However, the slow phase (microsecond) of P+680 dark reduction increased, and the amplitude of signal II was reduced by 20-30%, indicating that in a fraction of RCII, electron donation from Z to P+680 was impaired without losing primary photochemistry. This modification correlates with the irreversible change in D1 protein resulting in the formation of a trypsin-resistant fragment of 16 kDa detected in D1 isolated from light-exposed cells. The change in the Q-B stability could allow charge equilibration with QA and thus explain the rise in the intrinsic fluorescence level and reduction of electron flow to plastoquinone. The change in the lifetime of P+680 can account for further reduction in electron flow (photo-inhibition). The irreversible light-dependent modification of D1 may serve as the signal for its degradation and replacement by a newly synthesized molecule (turnover).  相似文献   
95.
Location of electron transport chain components in chloroplast membranes of chlamydomonas reinhardi, y-1 was investigated by use of proteolytic digestion with soluble or insolubilized trypsin. Digestion of intact membrane vesicles with soluble trypsin inactivates the water-splitting system, the 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition site of Photosystem II, the electron transport between the two photosystems as well as the ferredoxin NADP reductase. Reduction of NADP with artificial electron donors for Photosystem I could be restored, however, by addition of purified reductase to trypsin-digested membranes. Electron transfer activities of Photosystems I and II reaction centers were resistant to trypsin digestion either from outside or from within the thylakoids when active trypsin was trapped inside the membrane vesicles by sonication and digestion carried out in the presence of trypsin inhibitor added from outside. In the latter case, the water-splitting system was also found to be resistant to digestion. Polyacrylamide-bound insolubilized trypsin inactivated only the ferredoxin NADP reductase. Photosynthetically active membranes obtained at different stages of development showed a basically similar behavior toward trypsin.  相似文献   
96.
With the discovery of targeted gene replacement, moss biology has been rapidly advancing over the last 10 years. This study demonstrates the usefulness of moss as a model organism for plant photosynthesis research. The two mosses examined in this study, Physcomitrella patens and Ceratodon purpureus, are easily cultured through vegetative propagation. Growth tests were conducted to determine carbon sources suitable for maintaining heterotrophic growth while photosynthesis was blocked. Photosynthetic parameters examined in these plants indicated that the photosynthetic activity of Ceratodon and Physcomitrella is more similar to vascular plants than cyanobacteria or green algae. Ceratodon plants grown heterotrophically appeared etiolated in that the plants were taller and plastids did not differentiate thylakoid membranes. After returning to the light, the plants developed green, photosynthetically active chloroplasts. Furthermore, UV-induced mutagenesis was used to show that photosynthesis-deficient mutant Ceratodon plants could be obtained. After screening approximately 1000 plants, we obtained a number of mutants, which could be arranged into the following categories: high fluorescence, low fluorescence, fast and slow fluorescence quenching, and fast and slow greening. Our results indicate that in vivo biophysical analysis of photosynthetic activity in the mosses can be carried out which makes both mosses useful for photosynthesis studies, and Ceratodon best sustains perturbations in photosynthetic activity.  相似文献   
97.
The genome of Drosophila melanogaster contains methylated cytosines. Recent studies indicate that DNA methylation in the fruit fly depends on one DNA methyltransferase, dDNMT2. No obvious phenotype is associated with the downregulation of this DNA methyltransferase. Thus, identifying the target sequences methylated by dDNMT2 may constitute the first step towards understanding the biological functions of this enzyme. We used anti-5-methylcytosine antibodies as affinity column to identify the methylated sequences in the genome of adult flies. Our analysis demonstrates that components of retrotransposons and repetitive DNA sequences are putative substrates for dDNMT2. The methylation status of DNA encoding Gag, a protein involved in delivering the transposition template to its DNA target, was confirmed by sodium bisulfite sequencing.  相似文献   
98.
Reversible phosphorylation of chl a/b protein complex II (LHCII), the mobile light-harvesting antenna, regulates its association and energy transfer/dissipation to photosystem (PS) II or I (state transition). Excitation of LHCII induces conformational changes affecting the exposure of the phosphorylation site at the N-terminal domain to protein kinase(s) [Zer, H., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282; Zer, H., et al. (2003) Biochemistry 42, 728-738]. Thus, it was of interest to examine whether the pigment composition of LHCII affects the light-induced modulation of LHCII phosphorylation and state transition. To this end, we have used thylakoids of wild-type Chlamydomonas reinhardtii and xanthophyll deficient mutants npq1, lor1, npq2, npq1 lor1, and npq2 lor1. Phosphorylated protein bands P11, P13, and P17 are considered components of the mobile C. reinhardtii LHCII complex. The protein composition of these bands has been analyzed by mass spectrometry using Qtof-2 with a nanospray attachment. P11 and P13 contain C. reinhardtii light-harvesting chlorophyll a/b binding protein LhcII type I. P17 contains C. reinhardtii LhcII types III and IV. Illumination of isolated thylakoids inhibits the redox-controlled phosphorylation of polypeptide bands P13 and P17 and to a lower extent that of P11. The light-induced inhibition of LHCII phosphorylation and the state transition process are not influenced by extensive differences in the xanthophyll composition of the mutants. Thus, LHCII can be visualized as possessing two functionally distinct, independent domains: (i) the pigment binding transmembrane domain regulating the extent of energy transfer/dissipation and (ii) the surface-exposed phosphorylation site regulating the association of LHCII with PSII or PSI.  相似文献   
99.
Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3-D) imaging at molecular resolution (<5 nm) with a close-to-life preservation of the specimen. In conjunction with pattern recognition techniques, it enables us to map the molecular landscape inside cells. The application of cryo-ET to intact cells provides novel insights into the structure and the spatial organization of the cytoskeleton in prokaryotic and eukaryotic cells.  相似文献   
100.
A CO2 concentrating mechanism has been identified in the phycoerythrin-possessing Synechococcus sp. WH7803 and has been observed to be severely inhibited by short exposure to elevated light intensities. A light treatment of 300–2000 μmol quanta·m?2·s?1 resulted in a considerable decay in the variable fluorescence of PSII with time, suggesting decreased efficiency of energy transfer from the phycobilisomes, direct damage to the reaction center II, or both. Measurements of the activity of PSII and changes in fluorescence emission spectra during a light treatment of 1000 μmol quanta·m?2·s?1 indicated considerable reduction in the energy flow from the phycocyanin to the phycobilisome terminal acceptor and chlorophyll a. Consequently, whereas the maximal photosynthetic rate, at saturating light and Co2 concentration, was hardly affected by a light treatment of 1000 μmol quanta·m?2·s?1 for 2 h, the light intensity required to reach that maximum increased with the duration of the light treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号