首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   50篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   12篇
  2012年   19篇
  2011年   18篇
  2010年   11篇
  2009年   9篇
  2008年   15篇
  2007年   17篇
  2006年   18篇
  2005年   5篇
  2004年   12篇
  2003年   11篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1992年   6篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   6篇
  1976年   4篇
  1975年   2篇
  1972年   6篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1967年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
11.
Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.  相似文献   
12.
Photosystem II, the oxygen-evolving complex of photosynthetic organisms, includes an intriguingly large number of low molecular weight polypeptides, including PsbM. Here we describe the first knock-out of psbM using a transplastomic, reverse genetics approach in a higher plant. Homoplastomic Delta psbM plants exhibit photoautotrophic growth. Biochemical, biophysical, and immunological analyses demonstrate that PsbM is not required for biogenesis of higher order photosystem II complexes. However, photosystem II is highly light-sensitive, and its activity is significantly decreased in Delta psbM, whereas kinetics of plastid protein synthesis, reassembly of photosystem II, and recovery of its activity are comparable with the wild type. Unlike wild type, phosphorylation of the reaction center proteins D1 and D2 is severely reduced, whereas the redox-controlled phosphorylation of photosystem II light-harvesting complex is reversely regulated in Delta psbM plants because of accumulation of reduced plastoquinone in the dark and a limited photosystem II-mediated electron transport in the light. Charge recombination in Delta psbM measured by thermoluminescence oscillations significantly differs from the 2/6 patterns in the wild type. A simulation program of thermoluminescence oscillations indicates a higher Q(B)/Q(-)(B) ratio in dark-adapted mutant thylakoids relative to the wild type. The interaction of the Q(A)/Q(B) sites estimated by shifts in the maximal thermoluminescence emission temperature of the Q band, induced by binding of different herbicides to the Q(B) site, is changed indicating alteration of the activation energy for back electron flow. We conclude that PsbM is primarily involved in the interaction of the redox components important for the electron flow within, outward, and backward to photosystem II.  相似文献   
13.

Background  

The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank.  相似文献   
14.
15.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   
16.
A fundamental problem in biology is to understand how fertilization initiates reproductive development. Higher plant reproduction is unique because two fertilization events are required for sexual reproduction. First, a sperm must fuse with the egg to form an embryo. A second sperm must then fuse with the adjacent central cell nucleus that replicates to form an endosperm, which is the support tissue required for embryo and/or seedling development. Here, we report cloning of the Arabidopsis FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) gene. The FIE protein is a homolog of the WD motif-containing Polycomb proteins from Drosophila and mammals. These proteins function as repressors of homeotic genes. A female gametophyte with a loss-of-function allele of fie undergoes replication of the central cell nucleus and initiates endosperm development without fertilization. These results suggest that the FIE Polycomb protein functions to suppress a critical aspect of early plant reproduction, namely, endosperm development, until fertilization occurs.  相似文献   
17.
Protein function is often mediated via formation of stable or transient complexes. Here we report the determination of protein-protein interactions in plants using bimolecular fluorescence complementation (BiFC). The yellow fluorescent protein (YFP) was split into two non-overlapping N-terminal (YN) and C-terminal (YC) fragments. Each fragment was cloned in-frame to a gene of interest, enabling expression of fusion proteins. To demonstrate the feasibility of BiFC in plants, two pairs of interacting proteins were utilized: (i) the alpha and beta subunits of the Arabidopsis protein farnesyltransferase (PFT), and (ii) the polycomb proteins, FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA). Members of each protein pair were transiently co-expressed in leaf epidermal cells of Nicotiana benthamiana or Arabidopsis. Reconstitution of a fluorescing YFP chromophore occurred only when the inquest proteins interacted. No fluorescence was detected following co-expression of free non-fused YN and YC or non-interacting protein pairs. Yellow fluorescence was detected in the cytoplasm of cells that expressed PFT alpha and beta subunits, or in nuclei and cytoplasm of cells that expressed FIE and MEA. In vivo measurements of fluorescence spectra emitted from reconstituted YFPs were identical to that of a non-split YFP, confirming reconstitution of the chromophore. Expression of the inquest proteins was verified by immunoblot analysis using monoclonal antibodies directed against tags within the hybrid proteins. In addition, protein interactions were confirmed by immunoprecipitations. These results demonstrate that plant BiFC is a simple, reliable and relatively fast method for determining protein-protein interactions in plants.  相似文献   
18.
Most enzymes in the central pathway of carotenoid biosynthesis in plants have been identified and studied at the molecular level. However, the specificity and role of cis-trans-isomerization of carotenoids, which occurs in vivo during carotene biosynthesis, remained unresolved. We have previously cloned from tomato (Solanum lycopersicum) the CrtISO gene, which encodes a carotene cis-trans-isomerase. To study the biochemical properties of the enzyme, we developed an enzymatic in vitro assay in which a purified tomato CRTISO polypeptide overexpressed in Escherichia coli cells is active in the presence of an E. coli lysate that includes membranes. We show that CRTISO is an authentic carotene isomerase. Its catalytic activity of cis-to-trans isomerization requires redox-active components, suggesting that isomerization is achieved by a reversible redox reaction acting at specific double bonds. Our data demonstrate that CRTISO isomerizes adjacent cis-double bonds at C7 and C9 pairwise into the trans-configuration, but is incapable of isomerizing single cis-double bonds at C9 and C9'. We conclude that CRTISO functions in the carotenoid biosynthesis pathway in parallel with zeta-carotene desaturation, by converting 7,9,9'-tri-cis-neurosporene to 9'-cis-neurosporene and 7'9'-di-cis-lycopene into all-trans-lycopene. These results establish that in plants carotene desaturation to lycopene proceeds via cis-carotene intermediates.  相似文献   
19.
The light exposure history and/or binding of different herbicides at the Q(B) site may induce heterogeneity of photosystem II acceptor side conformation that affects D1 protein degradation under photoinhibitory conditions. GTP was recently found to stimulate the D1 protein degradation of photoinactivated photosystem II (Spetea, C. , Hundal, T., Lohmann, F., and Andersson, B. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 6547-6552). Here we report that GTP enhances the cleavage of the D1 protein D-E loop following exposure of thylakoid membranes to either high light, low light, or repetitive single turnover flashes but not to trypsin. GTP does not stimulate D1 protein degradation in the presence of herbicides known to affect the accessibility of the cleavage site to proteolysis. However, GTP stimulates degradation that can be induced even in darkness in some photosystem II conformers following binding of the PNO8 herbicide (Nakajima, Y., Yoshida, S., Inoue, Y., Yoneyama, K., and Ono, T. (1995) Biochim. Biophys. Acta 1230, 38-44). Both the PNO8- and the light-induced primary cleavage of the D1 protein occur in the grana membrane domains. The subsequent migration of photosytem II containing the D1 protein fragments to the stroma domains for secondary proteolysis is light-activated. We conclude that the GTP effect is not confined to a specific photoinactivation pathway nor to the conformational state of the photosystem II acceptor side. Consequently, GTP does not interact with the site of D1 protein cleavage but rather enhances the activity of the endogenous proteolytic system.  相似文献   
20.
Protein phosphorylation and redox sensing in chloroplast thylakoids   总被引:12,自引:0,他引:12  
Transduction of light dependent signals to redox sensitive kinases in photosynthetic membranes modulates energy transfer to the photochemical reaction centres and regulates biogenesis, stability and turnover of thylakoid protein complexes. The occupancy of the quinol-oxidation site of the cytochrome bf complex by plastoquinol and the redox state of protein thiol groups act as elements of the signal transducing chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号