首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4936篇
  免费   304篇
  国内免费   2篇
  2024年   6篇
  2023年   13篇
  2022年   67篇
  2021年   80篇
  2020年   52篇
  2019年   71篇
  2018年   100篇
  2017年   87篇
  2016年   156篇
  2015年   263篇
  2014年   318篇
  2013年   342篇
  2012年   484篇
  2011年   425篇
  2010年   271篇
  2009年   241篇
  2008年   337篇
  2007年   264篇
  2006年   257篇
  2005年   220篇
  2004年   190篇
  2003年   171篇
  2002年   149篇
  2001年   127篇
  2000年   124篇
  1999年   113篇
  1998年   41篇
  1997年   28篇
  1996年   20篇
  1995年   24篇
  1994年   20篇
  1993年   17篇
  1992年   26篇
  1991年   23篇
  1990年   15篇
  1989年   12篇
  1988年   8篇
  1987年   4篇
  1986年   9篇
  1984年   4篇
  1982年   4篇
  1981年   4篇
  1977年   4篇
  1976年   4篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
  1969年   4篇
  1967年   5篇
  1966年   5篇
排序方式: 共有5242条查询结果,搜索用时 31 毫秒
991.
Natural killer (NK) cells are innate immune effector cells that protect against cancer and some viral infections. Until recently, most studies have investigated the molecular signatures of human or mouse NK cells to identify genes that are specifically expressed during NK cell development. However, the mechanism regulating NK cell development remains unclear. Here, we report a regulatory network of potential interactions during in vitro differentiation of human NK cells, identified using genome-wide mRNA and miRNA databases through hierarchical clustering analysis, gene ontology analysis and a miRNA target prediction program. The microRNA (miR)-583, which demonstrated the largest ratio change in mature NK cells, was highly correlated with IL2 receptor gamma (IL2Rγ) expression. The overexpression of miR-583 had an inhibitory effect on NK cell differentiation. In a reporter assay, the suppressive effect of miR-583 was ablated by mutating the putative miR-583 binding site of the IL2Rγ 3′ UTR. Therefore, we show that miR-583 acts as a negative regulator of NK cell differentiation by silencing IL2Rγ. Additionally, we provide a comprehensive database of genome-wide mRNA and miRNA expression during human NK cell differentiation, offering a better understanding of basic human NK cell biology for the application of human NK cells in immunotherapy.  相似文献   
992.
Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.  相似文献   
993.
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we generated an integrative genetic network using combinations of interactions, including protein-protein interactions and gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and drug) was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations. Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of 0.855, 0.828 and 0.797 respectively) in predicting novel drug indications, and displayed a better performance than other methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the different phases of drug development. We also identified and visualized the topological modules of predicted drug indications for certain types of cancers, and for Alzheimer’s disease. Within the network, those modules show potential pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and telmisartan as treatment for Alzheimer’s disease.  相似文献   
994.
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.  相似文献   
995.

Purpose

The purpose of this study is to compare different normal tissue complication probability (NTCP) models for predicting heart valve dysfunction (RVD) following thoracic irradiation.

Methods

All patients from our institutional Hodgkin lymphoma survivors database with analyzable datasets were included (n = 90). All patients were treated with three-dimensional conformal radiotherapy with a median total dose of 32 Gy. The cardiac toxicity profile was available for each patient. Heart and lung dose-volume histograms (DVHs) were extracted and both organs were considered for Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) NTCP model fitting using maximum likelihood estimation. Bootstrap refitting was used to test the robustness of the model fit. Model performance was estimated using the area under the receiver operating characteristic curve (AUC).

Results

Using only heart-DVHs, parameter estimates were, for the LKB model: D50 = 32.8 Gy, n = 0.16 and m = 0.67; and for the RS model: D50 = 32.4 Gy, s = 0.99 and γ = 0.42. AUC values were 0.67 for LKB and 0.66 for RS, respectively. Similar performance was obtained for models using only lung-DVHs (LKB: D50 = 33.2 Gy, n = 0.01, m = 0.19, AUC = 0.68; RS: D50 = 24.4 Gy, s = 0.99, γ = 2.12, AUC = 0.66). Bootstrap result showed that the parameter fits for lung-LKB were extremely robust. A combined heart-lung LKB model was also tested and showed a minor improvement (AUC = 0.70). However, the best performance was obtained using the previously determined multivariate regression model including maximum heart dose with increasing risk for larger heart and smaller lung volumes (AUC = 0.82).

Conclusions

The risk of radiation induced valvular disease cannot be modeled using NTCP models only based on heart dose-volume distribution. A predictive model with an improved performance can be obtained but requires the inclusion of heart and lung volume terms, indicating that heart-lung interactions are apparently important for this endpoint.  相似文献   
996.
997.
Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.  相似文献   
998.
Nature uses 20 canonical amino acids as the standard building blocks of proteins; however, the incorporation of unnatural amino acids (Uaas) can endow polypeptide sequences with new structural and functional features. Although aminoacyl-tRNA synthetases (aaRSs) can accept an array of Uaas in place of their natural counterparts, Uaas generally are charged to tRNAs with substantially lower efficiencies. This particularly makes it difficult to incorporate multiple Uaas into a protein sequence. In this study, we discuss the use of a cell-free protein synthesis system as a versatile platform for the efficient incorporation of multiple Uaas into proteins. Taking advantage of the open nature of cell-free protein synthesis that allows flexible manipulation of its ingredients, we explored the application of Uaas in 10 mM range of concentrations to kinetically overcome the low affinity of aaRSs towards unnatural amino acids. Supplementation of recombinant aaRSs was also investigated to further increase the Uaa-tRNA pools. As a result, under the modified reaction conditions, as many as five different Uaas could be incorporated into a single protein without compromising the yield of protein synthesis.  相似文献   
999.
Glycogen synthase kinase-3β (GSK-3β) is involved in the pathogenesis of various kidney diseases. This study was undertaken to examine the changes in GSK-3β activity in podocytes under diabetic conditions and to elucidate the functional role of GSK-3β in podocyte apoptosis. In vivo, 32 rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with 6-bromoindirubin-3′-oxime (BIO) for 3 months. In vitro, immortalized mouse podocytes were exposed to 5.6 mM glucose or 30 mM glucose (HG) with or without 10 μM BIO. Western blot analysis and TUNEL or Hoechst 33342 staining were performed to identify apoptosis. Urinary albumin excretion was significantly higher in DM rats, and this increase was significantly abrogated in DM rats by BIO treatment. The protein expression of Tyr216-phospho-GSK-3β was significantly increased in DM glomeruli and in cultured podocytes exposed to HG. Western blot analysis revealed that the protein expression of Bax and active fragments of caspase-3 were significantly increased, whereas phospho-Akt, β-catenin, and Bcl-2 protein expression were significantly decreased in DM glomeruli and HG-stimulated podocytes. Apoptosis, determined by TUNEL assay and Hoechst 33342 staining, was also significantly increased in podocytes under diabetic conditions. The changes in the expression of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG-stimulated podocytes were significantly ameliorated by BIO. These findings suggest that enhanced GSK-3β activity within podocytes under diabetic conditions is associated with podocyte loss in diabetic nephropathy.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号