首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5054篇
  免费   306篇
  国内免费   2篇
  5362篇
  2024年   8篇
  2023年   16篇
  2022年   75篇
  2021年   81篇
  2020年   53篇
  2019年   73篇
  2018年   103篇
  2017年   89篇
  2016年   161篇
  2015年   267篇
  2014年   322篇
  2013年   343篇
  2012年   496篇
  2011年   436篇
  2010年   275篇
  2009年   252篇
  2008年   346篇
  2007年   272篇
  2006年   270篇
  2005年   229篇
  2004年   201篇
  2003年   172篇
  2002年   152篇
  2001年   127篇
  2000年   124篇
  1999年   112篇
  1998年   39篇
  1997年   28篇
  1996年   21篇
  1995年   21篇
  1994年   20篇
  1993年   17篇
  1992年   26篇
  1991年   23篇
  1990年   14篇
  1989年   11篇
  1988年   8篇
  1987年   4篇
  1986年   9篇
  1984年   4篇
  1982年   4篇
  1981年   3篇
  1977年   4篇
  1976年   4篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
  1969年   4篇
  1967年   5篇
  1966年   5篇
排序方式: 共有5362条查询结果,搜索用时 15 毫秒
991.
Urokinase plasminogen activator receptor (uPAR) plays a major role in cancer-invasion and metastasis and uPAR expression is correlated with a poor prognosis in various cancer types. Moreover, the expression of uPAR is increased under hypoxic conditions. Nitric oxide (NO) and its metabolites produced by inducible nitric oxide synthase (iNOS) are important products ofhypoxic stress, and NO may activate or modulate extracellular signal regulated kinase (ERK). Here, we evaluated uPA, uPAR, and activated ERK levels under hypoxic conditions, and the modulatory effects of iNOS and NO in the MDA-MB-231 human breast cancer cell line. Cells were incubated in a hypoxic or normoxic incubator and treated with PD98059 (a MEK 1/2 inhibitor, which abrogates ERK phosphorylation) and aminoguanidine (a selective iNOS inhibitor), uPAR expression, ERK phosphorylation, and uPA activity were found to be increased under hypoxic conditions. Moreover, when cells were treated with PD98059 under hypoxic conditions, uPAR was downregulated, whereas aminoguanidine markedly increased ERK phosphorylation in a dose dependent manner. Furthermore, aminoguanidine increased uPAR expression and prevented the inhibition of uPAR expression by PD98059. These results demonstrated that uPAR is induced by hypoxia and that increased uPAR expression is mediated by ERK phosphorylation, which in turn is modulated by iNOS/NO in MDA-MB-231 cells. We conclude that iNOS/NO downregulates the expression of uPAR under hypoxic conditions via ERK pathway modulation.  相似文献   
992.
Jo A  Nam YJ  Oh JY  Cheon HS  Jeromin A  Lee JA  Kim HK 《BMB reports》2010,43(10):677-682
Kv4.2, a pore-forming α-subunit of voltage-gated A-type potassium channels, is expressed abundantly in the soma and dendrites of hippocampal neurons, and is responsible for somatodendritic I(A) current. Recent studies have suggested that changes in the surface levels of Kv4.2 potassium channels might be relevant to synaptic plasticity. Although the function and expression of Kv4.2 protein have been extensively studied, the dendritic localization of Kv4.2 mRNA is not well described. In this study, Kv4.2 mRNAs were shown to be localized in the dendrites near postsynaptic regions. The dendritic transport of Kv4.2 mRNAs were mediated by microtubule- based movement. The 500 nucleotides of specific regions within the 3'-untranslated region of Kv4.2 mRNA were found to be necessary and sufficient for its dendritic localization. Collectively, these results suggest that the dendritic localization of Kv4.2 mRNAs might regulate the dendritic surface level of Kv4.2 channels and synaptic plasticity.  相似文献   
993.
994.

Background

Fungi are constantly exposed to nitrogen limiting environments, and thus the efficient regulation of nitrogen metabolism is essential for their survival, growth, development and pathogenicity. To understand how the rice blast pathogen Magnaporthe oryzae copes with limited nitrogen availability, a global proteome analysis under nitrogen supplemented and nitrogen starved conditions was completed.

Methods

M. oryzae strain 70–15 was cultivated in liquid minimal media and transferred to media with nitrate or without a nitrogen source. Proteins were isolated and subjected to unfractionated gel-free based liquid chromatography-tandem mass spectrometry (LC-MS/MS). The subcellular localization and function of the identified proteins were predicted using bioinformatics tools.

Results

A total of 5498 M. oryzae proteins were identified. Comparative analysis of protein expression showed 363 proteins and 266 proteins significantly induced or uniquely expressed under nitrogen starved or nitrogen supplemented conditions, respectively. A functional analysis of differentially expressed proteins revealed that during nitrogen starvation nitrogen catabolite repression, melanin biosynthesis, protein degradation and protein translation pathways underwent extensive alterations. In addition, nitrogen starvation induced accumulation of various extracellular proteins including small extracellular proteins consistent with observations of a link between nitrogen starvation and the development of pathogenicity in M. oryzae.

Conclusion

The results from this study provide a comprehensive understanding of fungal responses to nitrogen availability.
  相似文献   
995.
996.
997.
Control of the inflammatory response is of wide interest given its important role in many diseases. In recent years we identified novel mechanisms and lipid mediators that play an active role in stimulating the resolution of self-limited acute inflammation. These novel pro-resolving mediators include the essential fatty acid-derived lipoxins, resolvins, protectins and maresins. Members of each possess a unique pro-resolving mechanism of action; each limits neutrophilic infiltration, regulates local mediators (chemokines, cytokines) as well as stimulates macrophage-enhanced clearance of apoptotic PMN, cellular debris and microbes. Given this unique mechanism of action, resolvins have already been shown to play pivotal roles in regulating key events in a wide range of experimental inflammatory diseases. These pro-resolving mediators also provide a molecular link between omega-3 essential fatty acids (e.g. EPA, DHA) and the resolution process of inflammation and tissue homeostasis. Here, we review recent evidence obtained using chiral LC-MS-MS-based lipidomics to identify a novel 18S-series of resolvins derived from EPA. Resolvin E1 possesses potent actions in vivo and in vitro demonstrated now in many laboratories, and herein we review comparisons in E-series resolvin biosynthesis and action of 18S-resolvin E1 and 18S-resolvin E2. The biosynthesis and formation of both 18S and 18R-series are enhanced with aspirin treatment and involve the utilization of dietary EPA as well as recombinant human 5-lipoxygenase and LTA(4) hydrolase in their stereospecific biosynthesis. Herein we also demonstrate the utility of LC-MS-MS-based lipidomics in identifying resolvins, protectins and related products in marine organisms such as Engraulis (Peruvian anchovy). These new findings emphasize the utility of chiral LC-MS-MS lipidomics and the potential for identifying new resolution circuits with chiral LC-MS-MS-based lipidomics and metabolomics.  相似文献   
998.
Jang Y  Oh HM  Kang I  Lee K  Yang SJ  Cho JC 《Journal of bacteriology》2011,193(13):3415-3416
Strain IMCC3088, cultivated from the Yellow Sea, is a novel isolate belonging to the OM60/NOR5 clade and is closely related to clone OM241, Congregibacter litoralis, and strain HTCC2080. Here, the genome sequence of strain IMCC3088 is presented, showing the absence of photosynthetic gene clusters and the presence of proteorhodopsin.  相似文献   
999.
? This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a protein phosphatase, foldase chaperone, and holdase chaperone. The enzymatic activities of this versatile protein are closely associated with its oligomeric status, ranging from low oligomeric protein species to HMW complexes. ? The phosphatase and foldase chaperone functions of AtPP5 are associated primarily with the low-molecular-weight (LMW) form, whereas the HMW form exhibits holdase chaperone activity. Transgenic over-expression of AtPP5 conferred enhanced heat shock resistance to wild-type A. thaliana and a T-DNA insertion knock-out mutant was defective in acquired thermotolerance. A recombinant phosphatase mutant (H290N) showed markedly increased holdase chaperone activity. ? In addition, enhanced thermotolerance was observed in transgenic plants over-expressing H290N, which suggests that the holdase chaperone activity of AtPP5 is primarily responsible for AtPP5-mediated thermotolerance. ? Collectively, the results from this study provide the first evidence that AtPP5 performs multiple enzymatic activities that are mediated by conformational changes induced by heat-shock stress.  相似文献   
1000.
Continuous production of fructooligosaccharides (FOS) by Aureobasidium pullulans immobilized on calcium alginate beads with a packed bed was investigated at a plant scale reactor. Optimum conditions were with 770 g sucrose/l, being fed at 200 l/h at 50°C which gave a productivity of 180 g FOS/l h. Initial activity was maintained for more than 100 days. The reactor was successfully scaled up to a production scale of 1.2 m3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号