全文获取类型
收费全文 | 4947篇 |
免费 | 303篇 |
国内免费 | 2篇 |
专业分类
5252篇 |
出版年
2024年 | 8篇 |
2023年 | 16篇 |
2022年 | 71篇 |
2021年 | 80篇 |
2020年 | 52篇 |
2019年 | 71篇 |
2018年 | 100篇 |
2017年 | 86篇 |
2016年 | 156篇 |
2015年 | 267篇 |
2014年 | 318篇 |
2013年 | 335篇 |
2012年 | 486篇 |
2011年 | 426篇 |
2010年 | 270篇 |
2009年 | 243篇 |
2008年 | 337篇 |
2007年 | 265篇 |
2006年 | 260篇 |
2005年 | 221篇 |
2004年 | 190篇 |
2003年 | 169篇 |
2002年 | 149篇 |
2001年 | 127篇 |
2000年 | 125篇 |
1999年 | 112篇 |
1998年 | 39篇 |
1997年 | 28篇 |
1996年 | 20篇 |
1995年 | 22篇 |
1994年 | 21篇 |
1993年 | 17篇 |
1992年 | 26篇 |
1991年 | 24篇 |
1990年 | 14篇 |
1989年 | 11篇 |
1988年 | 8篇 |
1987年 | 4篇 |
1986年 | 9篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1982年 | 5篇 |
1977年 | 4篇 |
1976年 | 4篇 |
1974年 | 7篇 |
1973年 | 3篇 |
1972年 | 3篇 |
1969年 | 4篇 |
1967年 | 5篇 |
1966年 | 5篇 |
排序方式: 共有5252条查询结果,搜索用时 15 毫秒
71.
Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function 总被引:20,自引:0,他引:20
Jang HH Lee KO Chi YH Jung BG Park SK Park JH Lee JR Lee SS Moon JC Yun JW Choi YO Kim WY Kang JS Cheong GW Yun DJ Rhee SG Cho MJ Lee SY 《Cell》2004,117(5):625-635
Although a great deal is known biochemically about peroxiredoxins (Prxs), little is known about their real physiological function. We show here that two cytosolic yeast Prxs, cPrxI and II, which display diversity in structure and apparent molecular weights (MW), can act alternatively as peroxidases and molecular chaperones. The peroxidase function predominates in the lower MW forms, whereas the chaperone function predominates in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causes the protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, Cys(47), which serves as an efficient "H(2)O(2)-sensor" in the cells. The chaperone function of these proteins enhances yeast resistance to heat shock. 相似文献
72.
Jewell JL Oh E Ramalingam L Kalwat MA Tagliabracci VS Tackett L Elmendorf JS Thurmond DC 《The Journal of cell biology》2011,193(1):185-199
How the Sec1/Munc18-syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c-wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus. 相似文献
73.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h. 相似文献
74.
Cho EJ Hwang HJ Kim SW Oh JY Baek YM Choi JW Bae SH Yun JW 《Applied microbiology and biotechnology》2007,75(6):1257-1265
The anti-diabetic activities of the exopolysaccharides (EPS) produced by submerged mycelial culture of two different mushrooms,
Tremella fuciformis and Phellinus baumii, in ob/ob mice were investigated. All the animals were randomly divided into three groups with seven animals in each group: The control
group received 0.9% NaCl solution; the diabetic groups were treated with EPS from T. fuciformis (Tf EPS) and P. baumii (Pb EPS) at the level of 200 mg/kg body weight using an oral zoned daily for 52 days. The plasma glucose levels in the EPS-fed
mice were substantially reduced by about 52% (Tf EPS) and 32% (Pb EPS), respectively, as compared to control mice. The results
of oral glucose tolerance test (OGTT) revealed that both EPS-fed groups significantly increased the glucose disposal after
52 days of EPS treatments. Furthermore, higher food efficiency ratios and reduced blood triglyceride levels were observed
in the EPS-treated groups. Because peroxisome proliferator-activated receptor gamma (PPAR-γ) is indeed a key regulator of
insulin action, we investigated the expression pattern of adipose tissue PPAR-γ messenger RNA (mRNA) and plasma levels of
PPAR-γ. It was revealed that PPAR-γ was significantly activated in response to EPS treatments. The results suggested that
both EPS exhibited considerable hypoglycemic effect and improved insulin sensitivity possibly through regulating PPAR-γ-mediated
lipid metabolism. Our results indicated that two mushroom-derived EPS might be developed as potential oral hypoglycemic agents
or functional foods for the management of non-insulin-dependent diabetes mellitus. 相似文献
75.
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h,
respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l−1
was produced without by-products from 500 g d-psicose l−1 after 6 h. 相似文献
76.
Regulation of cyclin-dependent kinase inhibitor p21<Superscript>WAF1/CIP1</Superscript> by protein kinase Cδ-mediated phosphorylation 总被引:1,自引:0,他引:1
Oh YT Chun KH Park BD Choi JS Lee SK 《Apoptosis : an international journal on programmed cell death》2007,12(7):1339-1347
Cyclin-dependent kinase (CDK) inhibitor p21WAF1/CIP1(-/-)-null mice have an increased incidence of tumor formation. Here, we demonstrate that p21WAF1/CIP1 is unstable in HeLa cells treated with siRNA duplexes that target PKCδ. PKCδ phosphorylates p21WAF1/CIP1 at a serine residue (146Ser) located in its C-terminal domain. In cells treated with 12-O-tetradecanoylphorbol 13-acetate, the levels of both p21WAF1/CIP1 and its 146Ser-phosphorylated form increased significantly. We also show that a substitution, resulting from a single nucleotide polymorphism
(SNP) at 149Asp found in certain cancer patients, strongly compromises PKCδ-mediated phosphorylation at 146Ser and results in cells that are relatively resistant to TNFα-induced apoptosis. Thus, post-translational phosphorylation
of p21WAF1/CIP1 is important from an apoptotic cell death, and may also have patho-physiological relevance for the development of human cancer. 相似文献
77.
Yoon SH Park HM Kim JE Lee SH Choi MS Kim JY Oh DK Keasling JD Kim SW 《Biotechnology progress》2007,23(3):599-605
When pT-LYCm4 containing lycopene synthetic genes was co-transformed with pSUcrtY or pSHcrtY containing crtY gene of Pantoea ananatis (P. ananatis) or Pantoea agglomerans (P. agglomerans), beta-carotene productions of 36 and 35 mg/L were obtained, respectively. No lycopene was detected in the beta-carotene production culture. pT-HB, constructed by addition of P. ananatis crtY gene into pT-LYCm4, was used for co-transformation with pSdxs and pSSN12Didi, which increased isopentenyl diphosphate and dimethylallyl diphosphate synthesis. beta-Carotene production significantly increased 1.5-fold (51 mg/L) with the amplification of the dxs gene through pSdxs and 4-fold (135 mg/L) with the mevalonate bottom pathway of pSSN12Didi in the presence of 3.3 mM mevalonate. The pT-DHB, constructed by integrating the dxs gene into pT-HB, was used for cotransformation of Escherichia coli (E. coli) harboring pSSN12Didi, resulting in beta-carotene production of 141 mg/L. Recombinant E. coli harboring pT-DHB and pSSN12Didi was used to maximize beta-carotene production by adjusting the available amounts of glycerol, a carbon source, and mevalonate, the precursor of the mevalonate bottom pathway. When recombinant E. coli was given 16.5 mM mevalonate and 2.5% (w/v) glycerol, beta-carotene production of 503 mg/L in concentration and 49.3 mg/g DCW in content was obtained at 144 h, which was the highest level of carotenoid production in E. coli ever reported in the literature. 相似文献
78.
A coupled achiral-chiral high performance liquid chromatographic method was developed and fully validated for the determination of bevantolol enantiomers, (-)-(S)-bevantolol and (+)-(R)-bevantolol, in human plasma. Plasma samples were prepared by solid phase extraction with Sep-Pak Plus C18 cartridges followed by HPLC. Bevantolol enantiomers and (+)-(R)-Propranolol as internal standard (IS) were preseparated from interfering components in plasma on a Phenomenex silica column and bevantolol enantiomers and IS were resolved and determined on a Chiralcel OJ-H chiral stationary phase. The two columns were connected by a switching valve equipped with silica precolumn. The Precolumn was used to concentrate bevantolol in the eluent from the achiral column before back flushing onto chiral phase. A detailed validation of the method was performed accordingly to FDA guidelines. For each enantiomer the assay was linear between 20 and 1600 ng/ml. The quantification limits of both bevantolol enantiomers were 20 ng/ml. The intraday variation was between 1.07 and 12.64% in relation to the measured concentration and the interday variation was 0.91 and 11.79%. The method has been applied to the determination of (-)-(S)- and (+)-(R)-bevantolol in plasma from healthy volunteers dosed with racemic bevantolol hydrochloride. 相似文献
79.
Chang-Su Park Soo-Jin Yeom Yu-Ri Lim Yeong-Su Kim Deok-Kun Oh 《World journal of microbiology & biotechnology》2011,27(4):743-750
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as
a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1
l-xylulose to 350 g l−1
l-lyxose after 3 h, and yielded 450 g l−1
l-tagatose from 500 g l−1
l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides. 相似文献
80.
Galina K. Vasilyeva Byung-Taek Oh Patrick J. Shea Rhae A. Drijber Vladimir D. Kreslavski Robert Minard Jean-Marc Bollag 《Bioremediation Journal》2000,4(2):111-124
Bioremediation of munitions-contaminated soil requires effective transformation and detoxification of high concentrations of 2,4,6-trinitrotoluene (TNT). Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, aerobically transformed TNT (100 mg/L) in culture medium within 15 h, causing transient accumulation of hydroxylaminodinitrotoluenes (HADNTs). The predominance of 2-hydroxylamino-4,6-dinitrotoluene (2HADNT), as well as 2-amino-4,6-dinitrotoluene (2ADNT) and 4,4' ,6,6' -tetranitro-2,2' -azoxytoluene (2,2'AZT), indicated preferential reduction of the TNT ortho nitro group. While only 12% of the TNT was transformed to 2ADNT, up to 65% was transformed to tetranitroazoxytoluenes (AZTs), which accumulated as a precipitate. The precipitate was formed by microscopic particles adhering to bacterial cells, which subsequently formed clusters containing lysed cells. Toxicity toward bacteria was primarily attributed to 2ADNT, because pure AZTs preincubated with sterile medium had little effect on the strain. While the culture medium containing TNT exhibited toxicity toward corn (Zea mays L.) and witchgrass (Panicum capillare L.), little phytotoxicity was observed after incubating with P. aeruginosa strain MX for 4 d. Strong binding of HADNTs to soil and low AZT bioavailability may further promote the detoxification of TNT in soil. 相似文献