首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   5篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   11篇
  2011年   6篇
  2010年   8篇
  2009年   1篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
  2004年   9篇
  2003年   4篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   11篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
81.
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.  相似文献   
82.
Photosystem II (PS II) is photoinactivated during photosynthesis, requiring repair to maintain full function during the day. What is the mechanism(s) of the initial events that lead to photoinactivation of PS II? Two hypotheses have been put forward. The 'excess-energy hypothesis' states that excess energy absorbed by chlorophyll (Chl), neither utilized in photosynthesis nor dissipated harmlessly in non-photochemical quenching, leads to PS II photoinactivation; the 'Mn hypothesis' (also termed the two-step hypothesis) states that light absorption by the Mn cluster in PS II is the primary effect that leads to dissociation of Mn, followed by damage to the reaction centre by light absorption by Chl. Observations from various studies support one or the other hypothesis, but each hypothesis alone cannot explain all the observations. We propose that both mechanisms operate in the leaf, with the relative contribution from each mechanism depending on growth conditions or plant species. Indeed, in a single system, namely, the interior of a leaf, we could observe one or the other mechanism at work, depending on the location within the tissue. There is no reason to expect the two mechanisms to be mutually exclusive.  相似文献   
83.
The novel diphenyl piperazine derivatives containing the phenyl substituted aminopropanol moiety, including 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 1, which were modified at the connective between the diphenyl and piperazine moieties, have been found to be potent dopamine uptake inhibitors. To study the further structure-activity relationship (SAR) of these compounds, a new series was synthesized, with modifications at the 2-hydroxy-3-phenylaminopropyl moiety of 1. The series was evaluated for dopamine transporter (DAT) binding affinity with [3H]GBR12935 in rat striatal membranes. Most of the compounds showed moderate to high DAT binding affinities and some were approximately equivalent in activity to compound 1 or GBR12909 as a dopamine uptake inhibitor, with IC(50) values of nanomolar range. The SAR suggested that on exhibiting a potent interaction with the DAT, there is probably a steric limitation around the benzene ring of the phenylamino moiety of 1, allowing only small-sized substituents with the exception of basic moieties at the 4-position. In addition, the SAR at the 3-amino-2-propanol moiety of 1 suggested that either the nitrogen atom with an electron donating substituent or the unsubstituted nitrogen atom and also the hydroxy group are desirable for elicitation of a potent DAT binding affinity.  相似文献   
84.
85.
86.
Photosynthesis Research - Light energy causes damage to Photosystem I (PSI) and Photosystem II (PSII). The majority of the previous photoinhibition studies have been conducted with PSII, which...  相似文献   
87.
Delignification is effective for improving the saccharification efficiency of lignocellulosic biomass materials. We previously identified that the expression of a fungal laccase (Lac) fused with a bacterial cellulose-binding module domain (CBD) improved the enzymatic saccharification efficiency of rice plants. In this work, to evaluate the ability of the Lac-CBD fused chimeric enzyme to improve saccharification efficiency in a dicot plant, we introduced the chimeric gene into a dicot model plant, Arabidopsis thaliana. Transgenic plants expressing the Lac-CBD chimeric gene showed normal morphology and growth, and showed a significant increase of enzymatic saccharification efficiency compared to control plants. The transgenic plants with the largest improvement of enzymatic saccharification efficiency also showed an increase of crystalline cellulose in their cell wall fractions. These results indicated that expression of the Lac-CBD chimeric protein in dicotyledonous plants improved the enzymatic saccharification of plant biomass by increasing the crystallinity of cellulose in the cell wall.  相似文献   
88.
Diabetic nephropathy in KK and KK-Ay mice.   总被引:4,自引:0,他引:4  
KK mice and KK-Ay mice were examined for age related changes in blood and urinary biophysiological parameters. Blood hemoglobin A1c levels were significantly higher in KK-Ay and KK mice as compared to non-diabetic ddY mice. In both diabetic mice, especially KK-Ay mice, plasma insulin levels markedly increased at 2 to 4 months of age, and the urinary glucose and microalbumin levels and albumin-to-creatinine ratios increased dependent on age. Plasma thrombomodulin levels significantly increased at 2 to 4 months of age in both KK and KK-Ay mice. Mild enlargement of mesangial matrix and segmental proliferative glomerular nephritis were revealed in KK and KK-Ay mice, respectively, at 4 months of age. KK-Ay mice with insulin resistance and high urine mAlb level might be useful as models for the early stage of diabetic nephropathy.  相似文献   
89.
90.
Oguchi R  Hikosaka K  Hiura T  Hirose T 《Oecologia》2008,155(4):665-675
Some shade leaves increase their photosynthetic capacity (P max) when exposed to a higher irradiance. The increase in P max is associated with an increase in chloroplast size or number. To accommodate those chloroplasts, plants need to make thick leaves in advance. We studied the cost and benefit of photosynthetic acclimation in mature leaves of a tree species, Kalopanax pictus Nakai, in a cool-temperate deciduous forest. Costs were evaluated as the additional investment in biomass required to make thick leaves, while the benefit was evaluated as an increase in photosynthetic carbon gain. We created gaps by felling canopy trees and examined the photosynthetic responses of mature leaves of the understorey seedlings. In the shade, leaves of K. pictus had vacant spaces that were not filled by chloroplasts in the mesophyll cells facing the intercellular space. When those leaves were exposed to higher irradiance after gap formation, the area of the mesophyll surface covered by chloroplasts increased by 17% and P max by 27%. This increase in P max led to an 11% increase in daily carbon gain, which was greater than the amount of biomass additionally invested to construct thicker leaves. We conclude that the capacity of a plant to acclimate to light (photosynthetic acclimation) would contribute to rapid growth in response to gap formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号