首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82487篇
  免费   1886篇
  国内免费   46篇
  2018年   886篇
  2017年   1061篇
  2016年   2786篇
  2015年   6116篇
  2014年   5701篇
  2013年   5431篇
  2012年   4603篇
  2011年   1852篇
  2010年   1993篇
  2009年   1959篇
  2008年   466篇
  2007年   419篇
  2006年   461篇
  2005年   6563篇
  2004年   5267篇
  2003年   3477篇
  2002年   1051篇
  2001年   1077篇
  2000年   308篇
  1999年   1465篇
  1998年   320篇
  1997年   164篇
  1992年   1923篇
  1991年   2009篇
  1990年   2073篇
  1989年   1997篇
  1988年   1951篇
  1987年   1813篇
  1986年   1623篇
  1985年   1652篇
  1984年   1092篇
  1983年   834篇
  1982年   459篇
  1981年   421篇
  1980年   370篇
  1979年   1075篇
  1978年   760篇
  1977年   610篇
  1976年   629篇
  1975年   873篇
  1974年   995篇
  1973年   1007篇
  1972年   953篇
  1971年   928篇
  1970年   823篇
  1969年   830篇
  1968年   734篇
  1967年   751篇
  1966年   585篇
  1965年   431篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Biochemistry of metallothionein   总被引:70,自引:0,他引:70  
J H K?gi  A Sch?ffer 《Biochemistry》1988,27(23):8509-8515
  相似文献   
992.
Structure of phosphate-free ribonuclease A refined at 1.26 A   总被引:21,自引:0,他引:21  
The structure of phosphate-free bovine ribonuclease A has been refined at 1.26-A resolution by a restrained least-squares procedure to a final R factor of 0.15. X-ray diffraction data were collected with an electronic position-sensitive detector. The final model consists of all atoms in the polypeptide chain including hydrogens, 188 water sites with full or partial occupancy, and a single molecule of 2-methyl-2-propanol. Thirteen side chains were modeled with two alternate conformations. Major changes to the active site include the addition of two waters in the phosphate-binding pocket, disordering of Gln-11, and tilting of the imidazole ring of His-119. The structure of the protein and of the associated solvent was extensively compared with three other high-resolution, refined structures of this enzyme.  相似文献   
993.
The primary structure of class III alcohol dehydrogenase (dimeric with chi subunits) from human liver has been determined by peptide analyses. The protein chain is a clearly distinct type of subunit distantly related to those of both human class I and class II alcohol dehydrogenases (with alpha, beta, gamma, and pi subunits, respectively). Disregarding a few gaps, residue differences in the chi protein chain with respect to beta 1 and pi occur at 139 and 140 positions, respectively. Compared to class I, the 373-residue chi structure has an extra residue, Cys after position 60, and two missing ones, the first two residues relative to class I, although the N-terminus is acetylated like that for those enzymes. The chi subunit contains two more tryptophan residues than the class I subunits, accounting for the increased absorbance at 280 nm. There are also four additional acidic and two fewer basic side chains than in the class I beta structure, compatible with the markedly different electrophoretic mobility of the class III enzyme. Residue differences between class III and the other classes occur with nearly equal frequency in the coenzyme-binding and catalytic domains. The similarity in the number of exchanges relative to that of the enzymes of the other two classes supports conclusions that the three classes of alcohol dehydrogenase reflect stages in the development of separate enzymes with distinct functional roles. In spite of the many exchanges, the residues critical to basic functional properties are either completely unchanged--all zinc ligands and space-restricted Gly residues--or partly unchanged--residues at the coenzyme-binding pocket.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
994.
Key enzymes involved in oxidation and esterification of long-chain fatty acids were investigated in male rats fed different types and amounts of oil in their diet. A diet with 20% (w/w) fish oil, partially hydrogenated fish oil (PHFO) and partially hydrogenated soybean oil (PHSO) was shown to stimulate the mitochondrial and microsomal palmitoyl-CoA synthetase activity (EC 6.2.1.3) compared to soybean oil-fed animals after 1 week of feeding. Rapeseed oil had no effect. Partially hydrogenated oils in the diet resulted in significantly higher levels of mitochondrial glycerophosphate acyltransferase compared to unhydrogenated oils in the diet. Rats fed 20% (w/w) rapeseed oil had a decreased activity of this mitochondrial enzyme, whereas the microsomal glycerophosphate acyltransferase activity was stimulated to a comparable extent with 20% (w/w) rapeseed oil, fish oil or PHFO in the diet. Increasing the amount of PHFO (from 5 to 25% (w/w)) in the diet for 3 days led to increased mitochondrial and microsomal palmitoyl-CoA synthetase and microsomal glycerophosphate acyltransferase activities with 5% of this oil in the diet. The mitochondrial glycerophosphate acyltransferase was only marginally affected by increasing the oil dose. Administration of 20% (w/w) PHFO increased rapidly the mitochondrial and microsomal palmitoyl-CoA synthetase, carnitine palmitoyltransferase and microsomal glycerophosphate acyltransferase activities almost to their maximum value within 36 h. In contrast, the glycerophosphate acyltransferase and palmitoyl-CoA hydrolase (EC 3.1.2.2) activities of the mitochondrial fraction and the peroxisomal beta-oxidation reached their maximum activities after administration of the dietary oil for 6.5 days. This sequence of enzyme changes (a) is in accordance with the proposal that an increased cellular level of long-chain acyl-CoA species act as metabolic messages for induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase, i.e., these enzymes are regulated by a substrate-induced mechanism, and (b) indicates that, with PHFO, a greater part of the activated fatty acids are directed from triacylglycerol esterification and hydrolysis towards oxidation in the mitochondria. It is also conceivable that the mitochondrial beta-oxidation is proceeding before the enhancement of peroxisomal beta-oxidation.  相似文献   
995.
In renal tubules isolated from fed rabbits glycerol is not utilized as a glucose precursor, probably due to the rate-limiting transfer of reducing equivalents from cytosol to mitochondria. Pyruvate and glutamate stimulated an incorporation of [14C]glycerol to glucose by 50- and 10-fold, respectively, indicating that glycerol is utilized as a gluconeogenic substrate under these conditions. Glycerol at concentration of 1.5 mM resulted in an acceleration of both glucose formation and incorporation of [14C]pyruvate and [14C]glutamate into glucose by 2- and 9-fold, respectively, while it decreased the rates of these processes from lactate as a substrate. In the presence of fructose, glycerol decreased the ATP level, limiting the rate of fructose phosphorylation and glucose synthesis. As concluded from the 'cross-over' plots, the ratios of both 3-hydroxybutyrate/acetoacetate and glycerol 3-phosphate/dihydroxyacetone phosphate, as well as from experiments performed with methylene blue and acetoacetate, the stimulatory effect of glycerol on glucose formation from pyruvate and glutamate may result from an acceleration of fluxes through the first steps of gluconeogenesis as well as glyceraldehyde-3-phosphate dehydrogenase. As inhibition by glycerol of gluconeogenesis from lactate is probably due to a marked elevation of the cytosolic NADH/NAD+ ratio resulting in a decline of flux through lactate dehydrogenase.  相似文献   
996.
ATP and ADP but not AMP lead to sustained hyperpolarization of Madin Darby canine kidney (MDCK) cells. The present study has been performed to test for an influence of other nucleotides on the potential difference across the cell membrane (PD) in subconfluent MDCK cells. PD has been continuously monitored with conventional microelectrodes during rapid exchange of extracellular fluid. Application of 1 mumol/1 UTP leads to a rapid (less than 2 s) hyperpolarization of the cell membrane by -17.0 +/- 0.4 mV (from -50.1 +/- 0.6 mV), a reduction of cell membrane resistance and an increase of the sensitivity of PD to alterations of extracellular potassium. The concentration needed for half maximal effect of UTP is approximately equal to 0.2 mumol/1. ITP is similarly effective, whereas UDP, GTP and GDP are less effective. Up to 1 mmol/1 UMP, GMP, TTP or CTP do not significantly alter PD. In calcium-free extracellular fluid the hyperpolarizing effect of UTP is blunted (-11.6 +/- 2.3 mV) and only transient. In conclusion, UTP similar to purine triphosphates hyperpolarizes MDCK cells by increasing the potassium conductance. The activation of potassium channels requires calcium, which is apparently recruited from both intra- and extracellular sources.  相似文献   
997.
A new species of protein proteinase inhibitors was detected in the granule-rich fraction of equine neutrophilic granulocytes. Five isoinhibitors were identified with a narrow enzyme specificity towards two microbial proteinases, e.g., proteinase K and subtilisin. Two isoinhibitors were purified and partially characterized. They had an Mr of 11,300 and 7400, respectively, and were resistant to perchloric acid and heat treatment at 100 degrees C for 20 min. The inhibitors retained their activity over a broad range of pH (1-9 and 1-12, respectively). The possible biological function of this species of protein proteinase inhibitors as defensins (= endogenous antibiotics) is tentatively discussed.  相似文献   
998.
Apolipoprotein-A-containing lipoproteins have been studied by means of crossed immunoelectrophoresis with intermediate gels. The experiments confirmed the presence in human plasma of lipoprotein particles with both apoA-I and apoA-II (LpA) and of those with apoA-I but no apoA-II (LpAI). Furthermore, they obtained evidence for the occurrence in human plasma of small amounts of lipoproteins containing apoA-II but not apoA-I, apoB, apoC-II, apoC-III or apoE.  相似文献   
999.
Continuous intracellular pH (pHi) measurements were performed in SIRC rabbit corneal epithelial cells using the pH-sensitive absorbance of intracellularly trapped 5(and 6)-carboxy-4',5'-dimethylfluorescein. Steady-state pHi in nominally bicarbonate free Ringer's solution averaged 6.87 +/- 0.02 (mean +/- S.E., n = 53). After intracellular acidification induced by the NH4Cl-prepulse technique, there was a sodium-dependent pHi recovery towards the normal steady-state pHi. The initial pHi recovery rate was a saturable function of extracellular sodium concentration with an apparent Km for external sodium of about 25 mM and a Vmax of about 0.28 pH units/min. Virtually no pHi recovery was observed in the absence of extracellular sodium. Sodium removal during steady state acidified the cells by 0.36 +/- 0.05 pH units (mean +/- S.E., n = 13) within 5 min. There was a dose-dependent inhibition of pHi recovery after NH4Cl prepulse by amiloride with an IC50 of about 15 microM. Amiloride in a concentration of 1 mM almost completely abolished pHi recovery. Amiloride (1 mM) applied during steady state induced an intracellular acidification of 0.2 +/- 0.03 pH units (mean +/- S.E., n = 7) within 5 min. These findings suggest that a Na+/H+ exchange is present in SIRC rabbit corneal epithelial cells. Na+/H+ exchange seems to be the major process involved in pHi recovery in SIRC cells after an intracellular acid load. Na+/H+ exchange also plays a role in the maintenance of steady-state pHi.  相似文献   
1000.
The pancreatic enzyme carboxyl ester lipase (CEL) has been shown to hydrolyse a large number of different esters, including triacylglycerols, cholesteryl esters and retinyl esters with an absolute requirement for bile salts. Some of the lipids that are substrates for CEL can also be hydrolysed by pancreatic lipase. In order to investigate the relative roles of human CEL and pancreatic lipase, the two enzymes were incubated on a pH-stat with isotope-labelled lipid substrate mixtures in physicochemical forms resembling the state of the dietary lipids in human intestinal contents. In the first set of experiments, cholesteryl oleate (CO) and retinyl palmitate (RP) were solubilised in an emulsion of triolein (TO) stabilised by egg phosphatidylcholine and bile salts. Lipase (always added together with its cofactor, colipase) hydrolysed TO, with monoolein and oleic acid as end-products, whereas CEL alone could not hydrolyse TO in the presence of phosphatidylcholine (PC). Lipase alone did not hydrolyse CO or RP, but CEL did hydrolyse these esters if lipase was present. Release of [3H]glycerol from labelled TO increased only slightly if CEL was added compared to lipase alone, suggesting that monoolein hydrolysis was slow under these conditions. In the second set of experiments, CO and RP were dissolved in bile salt/monoolein/oleic acid dispersions with varying bile salt concentrations. CEL hydrolysed CO and RP more rapidly in a system with a high bile salt concentration containing mixed micelles than in a system with a low bile salt concentration, where the lipids were dispersed in the form of mixed micellar and non-micellar aggregates; both types of aggregate have been reported to exist in human intestinal contents. In conclusion, these data suggest that the main function of CEL under physiological conditions is to hydrolyse cholesteryl and retinyl esters, provided that the triacylglycerol oil phase is hydrolysed by pancreatic lipase, which probably causes a transfer of the substrate lipids of CEL from the oil emulsion phase to an aqueous bile salt/lipolytic product phase. Depending on the bile salt/lipolytic product ratio, the substrate will reside in either micellar or non-micellar lipid aggregates, of which the micellar state is preferred by CEL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号