首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   8篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   12篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   11篇
  2000年   4篇
  1999年   8篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   6篇
  1988年   10篇
  1987年   6篇
  1986年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1979年   3篇
排序方式: 共有182条查询结果,搜索用时 31 毫秒
81.
Binding activity of a putative central neurotransmitter, L-glutamic acid, was examined in the supernatant preparations solubilized from rat retinal membranes by Nonidet P-40. [3H]Glutamate binding activity increased linearly with increasing concentrations of the solubilized proteins up to 15 micrograms. The binding activity reached an equilibrium within 10 min at 2 degrees C, while increasing with incubation time up to 60 min at 30 degrees C. Addition of an excess of nonradioactive glutamate rapidly decreased the activity at 30 degrees C. Scatchard analysis revealed that the solubilized retinal binding activity consisted of a single component with a KD of 0.25 microM and a Bmax of 57.4 pmol/mg protein. The solubilized binding activity exhibited a stereospecificity and a structure selectivity to L-glutamate, and was abolished by quisqualate, L-glutamate diethyl ester, and DL-2-amino-3-phosphonopropionate. None of the other agonists and antagonists for the central excitatory amino acid receptors affected the binding activity. Reduction of incubation temperature from 30 degrees C to 2 degrees C resulted in a drastic attenuation of the binding activity due to decrement of the number of the apparent binding sites. Cation-exchange column chromatography revealed that unidentified radioactive material was in fact formed during the incubation of [3H]glutamate with the retinal preparations at 30 degrees C. These results suggest that retinal [3H]glutamate binding activity may be derived at least in part from the quisqualate-sensitive membranous enzyme with a stereospecific and structure-selective high affinity for the central neurotransmitter.  相似文献   
82.
Protein kinase C (PKC) was partially purified from Xenopus laevis oocytes by ammonium sulfate fractionation followed by DEAE-cellulose and hydroxyapatite column chromatography. In the latter chromatography, two distinct PKC activities were identified. Both PKC fractions contained an 80 kDa protein which was recognized by three antisera raised against the conserved regions of mammalian PKC. However, specific antisera against alpha, beta I, beta II, and gamma-subspecies of rat PKC did not recognize the protein. Kinetic properties of the Xenopus PKCs were very similar to those of the rat alpha PKC, and only a subtle difference was found in the mode of activation by arachidonic acid. When oocytes were treated with the tumor promoter, phorbol 12-myristate 13-acetate, one of the Xenopus PKCs was found to disappear very rapidly, while the other remained unchanged up to 2 hr.  相似文献   
83.
84.
Nectins, Ca2+ -independent immunoglobulin-like cell-cell adhesion molecules, initiate cell-cell adhesion by their trans interactions and recruit cadherins to cooperatively form adherens junctions (AJs). In addition, the trans interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which increases the velocity of the formation of AJs. We examined here how nectins induce the activation of Cdc42 in MDCK epithelial cells and L fibroblasts. Nectins recruited and activated c-Src at the nectin-based cell-cell adhesion sites. FRG, a GDP/GTP exchange factor specific for Cdc42, was then recruited there, tyrosine phosphorylated by c-Src, and activated, causing an increase in the GTP-bound active form of Cdc42. Inhibition of the nectin-induced activation of c-Src suppressed the nectin-induced activation of FRG and Cdc42. Inhibition of the nectin-induced activation of FRG or depletion of FRG by RNA interference suppressed the nectin-induced activation of Cdc42. These results indicate that nectins induce the activation of Cdc42 through c-Src and FRG locally at the nectin-based cell-cell adhesion sites.  相似文献   
85.
86.
We investigated the biological effects of Er:YAG laser (2940‐nm; DELight, HOYA ConBio, Fremont, California) irradiation at fluences of 3.6, 4.2, 4.9, 6.3, 8.1 or 9.7 J cm?2 at 20 or 30 Hz for 20 or 30 seconds on primary human gingival fibroblasts (HGFs). Irradiation at 6.3 J cm?2 promoted maximal cell proliferation, determined by WST‐8 assay and crystal violet staining, but was accompanied by lactate dehydrogenase release, on day 3 post‐irradiation. Elevation of ATP level, Ki67 staining, and cyclin‐A2 mRNA expression confirmed that Er:YAG affected the cell cycle and increased the number of proliferating cells. Transmission electron microscopy showed alterations of mitochondria and ribosomal endoplasmic reticulum (ER) at 3 hours post‐irradiation at 6.3 J cm?2, and the changes subsided after 24 hours, suggesting transient cellular injury. Microarray analysis revealed up‐regulation of 21 genes involved in heat‐related biological responses and ER‐associated degradation. The mRNA expression of heat shock protein 70 family was increased, as validated by Real‐time PCR. Surface temperature measurement confirmed that 6.3 J cm?2 generated heat (40.9°C post‐irradiation). Treatment with 40°C‐warmed medium increased proliferation. Laser‐induced proliferation was suppressed by inhibition of thermosensory transient receptor potential channels. Thus, despite causing transient cellular damage, Er:YAG laser irradiation at 6.3 J cm?2 strongly potentiated HGF proliferation via photo‐thermal stress, suggesting potential wound‐healing benefit.   相似文献   
87.
Cloning of rat brain protein kinase C complementary DNA   总被引:12,自引:0,他引:12  
Four peptides derived from rat brain protein kinase C were partially sequenced. Using synthetic oligonucleotides deduced from the amino acid sequences as probes, a clone of complementary DNA (cDNA) was isolated from a cDNA library prepared from the same tissue. The nucleotide sequence of this cDNA clone revealed the primary structure of the carboxyl-terminal region as having 224 amino acids, with significant sequence homology with cyclic AMP-dependent and cyclic GMP-dependent protein kinases.  相似文献   
88.
Strychnine-insensitive [3H]glycine binding was detected in brain synaptic membranes treated with Triton X-100 using a filtration assay method. The binding was a time-dependent, inversely temperature-dependent, and reversible process with a relatively high affinity for the neuroactive amino acid. Scatchard analysis revealed that Triton treatment doubled both the affinity and density of the binding sites, which consisted of a single component. The binding was not only displaced by structurally-related amino acid such as D-serine and D-alanine, but also inhibited by some peptides containing glycine, including glycine methylester and N-methylglycine. These ligands invariably potentiated the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]- cyclohepten-5,10-imine ([3H]MK-801), a noncompetitive antagonist for the N-methyl-D-aspartate-sensitive subclass of the central excitatory amino acid receptors, in a concentration-dependent manner. Among various endogenous tryptophan metabolites, kynurenic acid significantly inhibited the strychnine-insensitive [3H]glycine binding. The Triton treatment did not affect the pharmacological profile of [3H]MK-801 binding sites. These results suggest that brain synaptic membranes treated with Triton X-100 are useful in evaluating the strychnine-insensitive and kynurenate-sensitive binding sites of glycine, which are functionally linked to N-methyl-D-aspartate- sensitive receptor channels.  相似文献   
89.
Among various quinoxaline derivatives examined, only 6,7-dichloroquinoxaline-2,3-dione (DCQX) competitively displaced the strychnine-insensitive binding of [3H]glycine, without affecting the other binding sites on the N-methyl-D-aspartate (NMDA) receptor complex. This novel specific antagonist abolished the ability of L-glutamate to potentiate [3H]MK-801 binding activity in brain synaptic membranes treated with Triton X-100. Inclusion of glycine reversed this preventive action of DCQX on the potentiation induced by glutamate.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号