首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3616篇
  免费   216篇
  国内免费   11篇
  2023年   6篇
  2022年   19篇
  2021年   53篇
  2020年   26篇
  2019年   31篇
  2018年   46篇
  2017年   33篇
  2016年   67篇
  2015年   111篇
  2014年   136篇
  2013年   206篇
  2012年   246篇
  2011年   249篇
  2010年   148篇
  2009年   152篇
  2008年   245篇
  2007年   247篇
  2006年   255篇
  2005年   250篇
  2004年   303篇
  2003年   242篇
  2002年   225篇
  2001年   36篇
  2000年   29篇
  1999年   49篇
  1998年   51篇
  1997年   32篇
  1996年   21篇
  1995年   30篇
  1994年   29篇
  1993年   30篇
  1992年   16篇
  1991年   22篇
  1990年   17篇
  1989年   21篇
  1988年   18篇
  1987年   7篇
  1986年   16篇
  1985年   10篇
  1984年   14篇
  1983年   9篇
  1982年   13篇
  1981年   13篇
  1980年   10篇
  1979年   7篇
  1978年   8篇
  1976年   5篇
  1974年   7篇
  1970年   8篇
  1969年   4篇
排序方式: 共有3843条查询结果,搜索用时 15 毫秒
991.
The scavenger receptor expressed by endothelial cells (SREC) was isolated from a human endothelial cell line and consists of two isoforms named SREC-I and -II. Both isoforms have no significant homology to other types of scavenger receptors. They contain 10 repeats of epidermal growth factor-like cysteine-rich motifs in the extracellular domains and have unusually long C-terminal cytoplasmic domains with Ser/Pro-rich regions. The extracellular domain of SREC-I binds modified low density lipoprotein and mediates a homophilic SREC-I/SREC-I or heterophilic SREC-I/SREC-II trans-interaction. However, the significance of large Ser/Pro-rich cytoplasmic domains of SRECs is not clear. Here, we found that when SREC-I was overexpressed in murine fibroblastic L cells, neurite-like outgrowth was induced, indicating that the receptor can lead to changes in cell morphology. The SREC-I-mediated morphological change required the cytoplasmic domain of the protein, and we identified advillin, a member of the gelsolin/villin family of actin regulatory proteins, as a protein binding to this domain. Reduction of advillin expression in L cells by RNAi led to the absence of the described SREC-I-induced morphological changes, indicating that advillin is a prerequisite for the change. Finally, we demonstrated that SREC-I and advillin were co-expressed and interacted with each other in dorsal root ganglion neurons during embryonic development and that overexpression of both SREC-I and advillin in cultured Neuro-2a cells induced long process formation. These results suggest that the interaction of SREC-I and advillin are involved in the development of dorsal root ganglion neurons by inducing the described morphological changes.  相似文献   
992.
SHPS-1 is a transmembrane protein whose cytoplasmic region undergoes tyrosine phosphorylation and then binds the protein-tyrosine phosphatase SHP-2. Formation of the SHPS-1-SHP-2 complex is implicated in regulation of cell migration. In addition, SHPS-1 and its ligand CD47 constitute an intercellular recognition system that contributes to inhibition of cell migration by cell-cell contact. The ectodomain of SHPS-1 has now been shown to be shed from cells in a reaction likely mediated by a metalloproteinase. This process was promoted by activation of protein kinase C or of Ras, and the released ectodomain exhibited minimal CD47-binding activity. Metalloproteinases catalyzed the cleavage of a recombinant SHPS-1-Fc fusion protein in vitro, and the primary cleavage site was localized to the juxtamembrane region of SHPS-1. Forced expression of an SHPS-1 mutant resistant to ectodomain shedding impaired cell migration, cell spreading, and reorganization of the actin cytoskeleton. It also increased the tyrosine phosphorylation of paxillin and FAK triggered by cell adhesion. These results suggest that shedding of the ectodomain of SHPS-1 plays an important role in regulation of cell migration and spreading by this protein.  相似文献   
993.
APJ is a G-protein-coupled receptor with seven transmembrane domains, and its endogenous ligand, apelin, was identified recently. They are highly expressed in the cardiovascular system, suggesting that APJ is important in the regulation of blood pressure. To investigate the physiological functions of APJ, we have generated mice lacking the gene encoding APJ. The base-line blood pressure of APJ-deficient mice is equivalent to that of wild-type mice in the steady state. The administration of apelin transiently decreased the blood pressure of wild-type mice and a hypertensive model animal, a spontaneously hypertensive rat. On the other hand, this hypotensive response to apelin was abolished in APJ-deficient mice. This apelin-induced response was inhibited by pretreatment with a nitric-oxide synthase inhibitor, and apelin-induced phosphorylation of endothelial nitric-oxide synthase in lung endothelial cells from APJ-deficient mice disappeared. In addition, APJ-deficient mice showed an increased vasopressor response to the most potent vasoconstrictor angiotensin II, and the base-line blood pressure of double mutant mice homozygous for both APJ and angiotensin-type 1a receptor was significantly elevated compared with that of angiotensin-type 1a receptor-deficient mice. These results demonstrate that APJ exerts the hypotensive effect in vivo and plays a counterregulatory role against the pressor action of angiotensin II.  相似文献   
994.
Reactive carbonyl compounds and oxidative stress have been recently shown to up-regulate the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent mitogen for vascular smooth muscle cells (SMCs) produced by SMC themselves. Because the polyol pathway has been reported to influence the formation of carbonyl compounds and the oxidative stress in various cells, we conducted this study to investigate whether the polyol pathway affects HB-EGF expression along with the generation of carbonyl compounds and the oxidative stress in SMCs. We found that, compared with those cultured with 5.5mM glucose, SMCs cultured with 40 mM glucose showed the accelerated thymidine incorporation, elevated levels of intracellular sorbitol, 3-deoxyglucosone (3-DG), advanced glycation end products (AGEs), and thiobarbituric acid-reactive substances (TBARS) along with the enhanced expression of HB-EGF mRNA. An aldose reductase inhibitor (ARI), SNK-860, significantly inhibited all of these abnormalities, while aminoguanidine suppressed 3-DG levels and HB-EGF mRNA expression independent of sorbitol levels. The results suggest that the polyol pathway may play a substantial role in SMC hyperplasia under hyperglycemic condition in part by affecting HB-EGF mRNA expression via the production of carbonyl compounds and oxidative stress.  相似文献   
995.
A protein-synthesizing system based on a minimal set of purified components was used to investigate the roles molecular chaperones play in the folding of newly synthesized polypeptides. After we ascertained that this system lacks intrinsic chaperones, the effect of adding chaperones in a co-translational or post-translational manner was directly evaluated. An aggregation-prone single-chain antibody was used as the model nascent chain. The participation of the trigger factor or the DnaK system during translation efficiently increased the level of functional protein that was generated. In addition, both systems also acted as chaperones after translation had been stopped. In contrast, the GroEL/ES system showed little or no co- or post-translational assistance in folding.  相似文献   
996.
Three-week exercise training decreased the steady state level of beta(2)-adrenergic receptor (beta(2)AR) mRNA in peritoneal macrophages from BALB/c mice. When peritoneal macrophages from both exercise-trained and sedentary control mice were stimulated with lipopolysaccharide (LPS), interleukin (IL)-12 mRNA and protein expression was markedly higher in trained mice than in control mice. To determine whether enhanced production of IL-12 was associated with decreased expression of beta(2)AR, we transfected the macrophage cell line, RAW264, with a eukaryotic expression vector containing beta(2)ar cDNA, establishing a cell line overexpressing beta(2)AR (RAWar). Following LPS stimulation, IL-12 mRNA and protein expression was significantly lower in RAWar cells than in RAW264 cells transfected with vector alone (RAWvec). Furthermore, when the expression of transfected beta(2)AR in RAWar cells was down-regulated by a tetracycline repressor-regulated mammalian expression system, expression of IL-12 mRNA and protein following LPS stimulation tended to return to the levels in RAWvec cells. These findings indicate that macrophage production of IL-12 following LPS stimulation is regulated by the expression level of beta(2)AR, suggesting that the down-regulation of beta(2)AR expression associated with exercise training improves IL-12-induced type 1 helper T cell-mediated immune responses.  相似文献   
997.
The effects of acute exercise on the protein expressions of heterotrimeric G protein alpha subunits were examined in rat adipocytes. Galphai2 protein expression was significantly reduced 0 and 3h after exercise but increased 24h after exercise, without alterations in Galphai2 mRNA expressions. The protein expressions of other alpha subunits, Galphas, Galphai1, and Galphai3, were not influenced. Both the 26S proteasome activity and polyubiquitination of Galphai2 protein were significantly increased 0 and 3h after exercise. Whereas, proteasome activity was decreased, and the polyubiquitination of Galphai2 protein was returned to the control level 24h after exercise. The reductions in Galphai2 protein expressions 0 and 3h after exercise were completely prevented by the injection either of a proteasome inhibitor or of a beta-adrenergic receptor blocker prior to exercise. Thus, acute exercise altered the expression of Galphai2 protein via mechanisms which involve the coupling of beta-adrenergic receptors to an agonist with subsequent ubiquitin-proteasome-dependent proteolysis.  相似文献   
998.
Light-driven proton transport in bacteriorhodopsin (BR) is achieved by dynamic rearrangement of the hydrogen-bonding network inside the membrane protein. Arg82 is located between the Schiff base region and proton release group, and has a major influence on the pK(a) values of these groups. It is believed that Arg82 changes its hydrogen-bonding acceptors during the pump cycle of BR, stages of which are correlated with proton movement along the transport pathway. In this study, we compare low-temperature polarized FTIR spectra of [eta(1,2)-(15)N]arginine-labeled BR in the 2750-2000 cm(-1) region with those of unlabeled BR for the K, L, M, and N intermediates. In the K-minus-BR difference spectra, (15)N-shifted modes were found at 2292 (-)/2266 (+) cm(-1) and at 2579 (-)/2567 (+) cm(-1). The former corresponds to strong hydrogen bonding, while the latter corresponds to very weak hydrogen bonding. Both N-D stretches probably originate from Arg82, the former oriented toward water 406 and the latter toward the extracellular side, and both hydrogen bonds are somewhat strengthened upon retinal photoisomerization. This perturbation of arginine hydrogen bonding is entirely relaxed in the L intermediate where no (15)N-isotope shifts are observed in the difference spectrum. In the M intermediate, the frequency is not significantly altered from that in BR. However, the polarized FTIR spectra strongly suggest that the dipolar orientation of the strongly hydrogen bonded N-D group of Arg82 is changed from perpendicular to parallel to the membrane plane. Such a change is presumably related to the motion of the Arg82 side chain from the Schiff base region to the extracellular proton release group. Additional bands corresponding to weak hydrogen bonding were observed in both the M-minus-BR and N-minus-BR spectra. Changes in hydrogen-bonding structures involving Arg82 are discussed on the basis of these FTIR observations.  相似文献   
999.
Our earlier NMR study showed that a two-disulfide variant of hen lysozyme containing intra-alpha-domain disulfide bridges, C6-C127 and C30-C115, is partially folded, with the alpha domain tightly folded to the nativelike conformation and the beta domain flexible or unfolded. With a view that the formation of a third disulfide bridge is a key for the accomplishment of the overall chain fold, three-dimensional structures of three-disulfide variants of hen lysozyme lacking one disulfide bridge (C64A/C80A, C76A/C94A, and C30A/C115A) were studied in detail using NMR spectroscopy. Amide hydrogen exchange rates were measured to estimate the degree of conformational fluctuation in a residue-specific manner. The structure of C76A/C94A was found to be quite similar to that of the wild type, except for the peptide segment of residues 74-78. The structure of C64A/C80A was considerably disordered in the entire region of the loop (residues 62-79). Further, it was found that a network of hydrogen bonds within the beta sheet and the 3(10) helix in the beta domain were disrupted and fluctuating. In C30A/C115A, the D helix was unstructured and the interface of the B helix with the D helix was significantly perturbed. However, the structural disorder generated in the hydrophobic core of the alpha domain was prevented by the C helix from propagating toward the beta domain. A marginally stable state in folded proteins is discussed based on the structures remaining in each three-disulfide variant.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号