首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   16篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   15篇
  2014年   15篇
  2013年   22篇
  2012年   37篇
  2011年   28篇
  2010年   16篇
  2009年   31篇
  2008年   29篇
  2007年   26篇
  2006年   26篇
  2005年   21篇
  2004年   25篇
  2003年   14篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1989年   2篇
  1987年   4篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1970年   1篇
排序方式: 共有405条查询结果,搜索用时 15 毫秒
51.
52.
Extracellular adenosine, a key regulator of physiology and immune cell function that is found at elevated levels in neonatal blood, is generated by phosphohydrolysis of adenine nucleotides released from cells and catabolized by deamination to inosine. Generation of adenosine monophosphate (AMP) in blood is driven by cell-associated enzymes, whereas conversion of AMP to adenosine is largely mediated by soluble enzymes. The identities of the enzymes responsible for these activities in whole blood of neonates have been defined in this study and contrasted to adult blood. We demonstrate that soluble 5′-nucleotidase (5′-NT) and alkaline phosphatase (AP) mediate conversion of AMP to adenosine, whereas soluble adenosine deaminase (ADA) catabolizes adenosine to inosine. Newborn blood plasma demonstrates substantially higher adenosine-generating 5′-NT and AP activity and lower adenosine-metabolizing ADA activity than adult plasma. In addition to a role in soluble purine metabolism, abundant AP expressed on the surface of circulating neonatal neutrophils is the dominant AMPase on these cells. Plasma samples from infant observational cohorts reveal a relative plasma ADA deficiency at birth, followed by a gradual maturation of plasma ADA through infancy. The robust adenosine-generating capacity of neonates appears functionally relevant because supplementation with AMP inhibited whereas selective pharmacologic inhibition of 5′-NT enhanced Toll-like receptor-mediated TNF-α production in neonatal whole blood. Overall, we have characterized previously unrecognized age-dependent expression patterns of plasma purine-metabolizing enzymes that result in elevated plasma concentrations of anti-inflammatory adenosine in newborns. Targeted manipulation of purine-metabolizing enzymes may benefit this vulnerable population.  相似文献   
53.
All-male populations of the freshwater prawn Macrobrachium rosenbergii were recently produced by a novel temporal RNA interference (RNAi)-based biotechnology for aquaculture purposes. This biotechnology opens the way to the wide use of all-male prawn populations as sustainable biocontrol agents against invading populations of freshwater snails, for which there is currently no environmentally friendly solution. Among the most damaging of the invasive freshwater snail species are the apple snails (Pomacea spp.), which inflict major damage on natural ecosystems and rice fields. The proposed use of all-male prawn populations as environmentally friendly biocontrol agents against invasive freshwater snails has several advantages: efficient predation by the prawns over a wide range of freshwater snails, the ready availability of the prawns, and the monosex non-reproductive nature of the biocontrol agents. Since the aquatic predators are strongly size selective, we quantified the predation rate as a function of body size of both predator and prey (M. rosenbergii and P. caniculata). Medium-sized and large prawns (~10–30 g) efficiently preyed small and medium-sized snails (up to 15 mm), while small prawns (up to 4 g) immediately and completely eradicated snail hatchlings. Medium-sized prawns (~22 g) exterminated a significant fraction of snail biomass within 24 h (up to 58% of their body mass) after being introduced into a tank of snails. A typical ‘climbing-to-the surface’ anti-predator behavior of the snails was recorded. The potential of all-male prawns as efficient biocontrol agents over hatchling and adult apple snails as part of an integrated pest management program is discussed. Our experiments set the stage for evaluating the ecological and economic implications of this generic solution for a wide variety of habitats.  相似文献   
54.
55.
Foraging theory postulates that interference is a foraging cost and affects patch exploitation and activity times. One such system contains two species of seed-eating gerbils inhabiting sandy habitats in the Negev Desert of Israel. Low population densities of the dominant species allowed us to examine the interaction between males and females of the subordinate species, Gerbillus andersoni allenbyi , as a function of interference and resource renewal. We used giving-up densities (GUDs; the amount of food left in a resource patch when a forager abandons the patch) in seed trays to quantify patch use by gerbils. By placing 6 trays at each foraging station and either presenting all 6 trays at the start of the night (pulse treatment) or presenting one tray at a station 6 times per night (renewal treatment), we were able to manipulate characteristics of resource renewal. We used radio telemetry to obtain an independent assessment of activity. Male and female G. a. allenbyi differed in their timing of activity, with males beginning earlier than females and remaining active later. This was most pronounced for the pulse treatment. For the renewal treatment, female activity in trays was more intense early in the night, but thereafter male activity was more intense. At the same time, telemetry showed that males and females did not differ in their total activity in or out of trays. This suggests that males begin their activity on the renewal treatment by exploiting the richest natural patches of seeds. Only later when these are depleted do they move to dominate the renewing seed trays. Finally, females exploited stabilized sand habitats more than did males, especially during the renewal treatment. Taken together, these findings suggest that male G. a. allenbyi interfere with foraging in females, causing temporal shifts in their use of space and resources.  相似文献   
56.
Capsule: In Griffon Vultures Gyps fulvus both parents take part in all parenting tasks but males take a significantly larger part of the burden.  相似文献   
57.
Summary Serum amyloid A (SAA), an acute-phase protein, exists normally in the serum while complexed with high-density lipoprotein 3 (SAA-HDL3). Its levels increase markedly during inflammatory diseases. The pentapeptide Tyr-Ile-Gly-Ser-Asp (YIGSR-like) and the tripeptide Arg-Gly-Asn (RGD-like), related to the cell adhesion domains of laminin and fibronectin, respectively, exist in SAA within close proximity (YIGSDKYFHARGNY; amino acid residues 29–42). A structure-function study of linear and head-to-tail cyclic peptides, related to the amino acid residues 29–42) and 70–76 (GRGAEDS) of human SAA, was performed in order to evaluate their ability to inhibit adhesion of human T-lymphocytes to surfaces coated with extracellular matrix purified from bovine corneal cells.  相似文献   
58.
Using transposon mutagenesis we generated a salt-sensitive mutant of the halophilic eubacterium Halomonas elongata impaired in the biosynthesis of the compatible solute ectoine. HPLC determinations of the cytoplasmic solute content showed the accumulation of a biosynthetic precursor of ectoine, l-2,4-diaminobutyric acid. Ectoine and hydroxyectoine were not detectable. This mutant failed to grow in minimal medium with NaCl concentrations exceeding 4%. However, when supplemented with organic osmolytes, the ability to grow in high-salinity medium (15% and higher) was regained. We cloned and sequenced the regions flanking the transposon insertion in the H. elongata chromosome. Sequence comparisons with known proteins revealed significant similarity of the mutated gene to the l-2,4-diaminobutyric acid acetyltransferase from the ectoine biosynthetic pathway in Marinococcus halophilus. Analysis of a PCR product demonstrated that the ectoine biosynthetic genes (ectABC) follow the same order as in M. halophilus.  相似文献   
59.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.  相似文献   
60.
Aims Resource allocation in plants can be strongly affected by competition. Besides plant–plant interactions, terrestrial plants compete with the soil bacterial community over nutrients. Since the bacterial communities cannot synthesize their own energy sources, they are dependent on external carbon sources. Unlike the effect of overall amounts of carbon (added to the soil) on plant performance, the effect of fine scale temporal variation in soil carbon inputs on the bacterial biomass and its cascading effects on plant growth are largely unknown. We hypothesize that continuous carbon supply (small temporal variance) will result in a relatively constant bacterial biomass that will effectively compete with plants for nutrients. On the other hand, carbon pulses (large temporal variance) are expected to cause oscillations in bacterial biomass, enabling plants temporal escape from competition and possibly enabling increased growth. We thus predicted that continuous carbon supply would increase root allocation at the expense of decreased reproductive output. We also expected this effect to be noticeable only when sufficient nutrients were present in the soil.Methods Wheat plants were grown for 64 days in pots containing either sterilized or inoculated soils, with or without slow-release fertilizer, subjected to one of the following six carbon treatments: daily (1.5mg glucose), every other day (3mg glucose), 4 days (6mg glucose), 8 days (12mg glucose), 16 days (24mg glucose) and no carbon control.Important findings Remarkably, carbon pulses (every 2–16 days) led to increased reproductive allocation at the expense of decreased root allocation in plants growing in inoculated soils. Consistent with our prediction, these effects were noticeable only when sufficient nutrients were present in the soil. Furthermore, soil inoculation in plants subjected to low nutrient availability resulted in decreased total plant biomass. We interpret this to mean that when the amount of available nutrients is low, these nutrients are mainly used by the bacterial community. Our results show that temporal variation in soil carbon inputs may play an important role in aboveground–belowground interactions, affecting plant resource allocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号