首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   1篇
  78篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2015年   6篇
  2014年   3篇
  2013年   8篇
  2012年   12篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
31.
Fusarium head blight (FHB) caused by several Fusarium species is one of the most serious diseases affecting wheat throughout the world. The efficiency of microbiological assays and real-time PCR to quantify major FHB pathogens in wheat ears after inoculation with F. graminearum, F. culmorum, F. avenaceum and F. poae under greenhouse and field conditions were evaluated. The frequency of infected kernel, content of fungal biomass, disease severity and kernel weight were determined. To measure the fungal biomass an improved DNA extraction method and a Sybr® Green real-time PCR were developed. The Sybr® Green real-time PCR proved to be highly specific for individual detection of the species in a matrix including fungal and plant DNA. The effect of Fusarium infection on visible FHB severity, frequency of infected kernels and thousand-kernel mass (TKM) significantly depended on the Fusarium species/isolate. F. graminearum resulted in highest disease level, frequency of infected kernels, content of fungal biomass, and TKM reduction followed by F. culmorum, F. avenaceum and F. poae, respectively. The comparison of frequency and intensity of kernel colonization proved differences in aggressiveness and development of the fungi in the kernels. Only for F. graminearum, the most aggressive isolate, application of microbiological and real-time PCR assays gave similar results. For the other species, the intensity of kernel colonization was lower than expected from the frequency of infection.  相似文献   
32.
Pathogenesis of Pseudoperonospora cubensis causing downy mildew of cucumber resulted in changes in the metabolic processes within cucumber leaves including the transpiration rate. Due to the negative correlation between transpiration rate and leaf temperature, digital infrared thermography permitted a non-invasive monitoring and an indirect visualization of downy mildew development. Depending on the stage of pathogenesis and the topology of chloroses and necroses, infection resulted in a typical temperature pattern. Spatial heterogeneity of the leaf temperature could be quantified by the maximum temperature difference (MTD) within a leaf. The MTD increased during pathogenesis with the formation of necrotic tissue and was related to disease severity as described by linear and quadratic regression curves. Under controlled conditions, changes in temperature of infected leaves allowed the discrimination between healthy and infected areas in thermograms, even before visible symptoms of downy mildew appeared. Environmental conditions during thermographic measurement, in particular air temperature and humidity, as well as water content and age of the leaf influenced the temperature of its surface. Conditions enhancing the transpiration rate facilitated the detection of changes in leaf temperature of infected leaves at early stages of infection. As modified by environmental conditions, MTD alone is not suitable for the quantification of downy mildew severity in the field.  相似文献   
33.
Fusarium species involved in the Fusarium head blight complex in Western Europe were investigated for their potential to infect and colonize non-damaged wheat leaves and to produce conidia on senescing wheat leaves incubated at high relative humidity. Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium poae and Fusarium tricinctum did not directly penetrate the leaf tissue after conidia germination on the leaf surface. Germ tubes grew on the host surface for 24–36 hr forming a mycelial network. After invading the host, some species formed runner hyphae between cell wall layers or underneath the cuticular layer. Macroscopic symptoms developed on leaves and stems from 7 d post inoculation. Inside leaf tissues, hyphae thickened in diameter and were both inter- and intra-cellular. Fusarium tricinctum formed sporophores which erupted through the leaf surface releasing numerous conidia. Incubation of senescing leaves at 100 % relative humidity for 48 hr resulted in sporulation of all Fusarium spp.  相似文献   
34.
5-Lipoxygenase (5-LOX) is the key player of pro-inflammatory leukotriene biosynthesis. Its regulatory or so-called PLAT (polycystin-1, lipoxygenase, α-toxin) domain binds allosteric modulators like calcium, membranes, coactosin-like protein and Dicer, thereby influencing 5-LOX activity at the nuclear membrane by mediating translocation. The PLAT domain may also regulate cytosolic 5-LOX activity and possibly influence microRNA metabolism. Hence, it has also evolved as a promising target for anti-inflammatory therapy. Research focusing on this substructure of 5-LOX requires an assay system based on the isolated domain. However, we found that the isolated PLAT domain was highly prone to aggregation and therefore unsuitable for interaction studies. Substitution of the single, membrane-binding tryptophan 75 with glycine reduced aggregation and substantially increased its thermal stability. Calcium interaction of the single mutant was confirmed by differential scanning fluorimetry. Moreover, crosslinking experiments demonstrated the ability of the isolated PLAT domain to bind Dicer C-terminus whereas the interaction with coactosin-like protein required the interplay of the catalytic and the PLAT domain.  相似文献   
35.
36.
Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.  相似文献   
37.
The present study assessed the diurnal variation in salivary cortisol in captive African elephants during routine management (baseline) and in relation to a potential stressor (translocation) to evaluate to what extent acute stress may affect diurnal cortisol patterns. Under baseline conditions, we collected morning and afternoon saliva samples of 10 animals (three zoos) on different days in two study periods (n = 3–10 per animal, daytime and period). Under stress conditions, we sampled the transported cow (newcomer) and the two cows of the destination zoo before and after the transport in the morning and afternoon (n = 3–9 per animal, daytime and transport phase), as well as after the first introduction of the newcomer to the bull (n = 1 per animal). Cortisol was measured in unextracted samples by enzyme immunoassay. Under baseline conditions, we observed the expected diurnal variation with higher cortisol levels in the morning than in the afternoon. Under stress conditions, neither a significant difference between pre- and posttransport, nor between morning and afternoon levels was found. The percentage difference between morning and afternoon cortisol after the transport, however, was remarkably lower than before the transport in the newcomer potentially indicating a stress response to familiarization. Saliva samples taken immediately after the introduction of the newcomer to the bull revealed a marked cortisol increase. Our findings indicate that stressors may disturb the diurnal cortisol rhythm. Furthermore, provided that samples can be collected promptly, salivary cortisol is a useful minimally invasive measure of physiological stress in the African elephant.  相似文献   
38.
Zn is essential for growth and development. The bioavailability of Zn is affected by several factors such as other food components. It is therefore of interest, to understand uptake mechanisms of Zn delivering compounds to identify ways to bypass the inhibitory effects of these factors. Here, we studied the effect of Zn amino acid conjugates (ZnAAs) on the bioavailabilty of Zn. We used Caco-2 cells and enterocytes differentiated from human induced pluripotent stem cells from a control and Acrodermatitis enteropathica (AE) patient, and performed fluorescence based assays, protein biochemistry and atomic absorption spectrometry to characterize cellular uptake and absorption of ZnAAs. The results show that ZnAAs are taken up by AA transporters, leading to an intracellular enrichment of Zn mostly uninhibited by Zn uptake antagonists. Enterocytes from AE patients were unable to gain significant Zn through exposure to ZnCl2 but did not show differences with respect to ZnAAs. We conclude that ZnAAs may possess an advantage over classical Zn supplements such as Zn salts, as they may be able to increase bioavailability of Zn, and may be more efficient in patients with AE.  相似文献   
39.
Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during clinical progression and are suggestive of diverse functional roles of the respective proteins.  相似文献   
40.
Semi-natural grassland soils are frequently fertilised for agricultural improvement. This practice often comes at a loss of the indigenous flora while fast-growing nitrogen-responsive species, such as Lolium perenne, take over. Since soil microbial communities depend on plant root exudates for carbon and nitrogen sources, this shift in vegetation is thought to influence soil microbial community structure. In this study, we investigated the influence of different plant species, fertilisation and L. perenne ingression on microbial communities in soils from three semi-natural Irish grasslands. Bacterial and fungal community compositions were determined by automated ribosomal intergenic spacer analysis, and community changes were linked to environmental factors by multivariate statistical analysis. Soil type had a strong effect on bacterial and fungal communities, mainly correlated to soil pH, as well as soil carbon and nitrogen status. Within each soil type, plant species composition was the main influencing factor followed by nitrogen fertilisation and finally Lolium ingression in the acidic upland and mesotrophic grassland. In the alkaline grassland, however, Lolium ingression had a stronger effect than fertilisation. Our results suggest that a change in plant species diversity strongly influences the microbial community structure, which may subsequently lead to significant changes in ecosystem functioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号