首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5487篇
  免费   513篇
  国内免费   4篇
  6004篇
  2023年   56篇
  2022年   92篇
  2021年   192篇
  2020年   91篇
  2019年   144篇
  2018年   125篇
  2017年   119篇
  2016年   165篇
  2015年   293篇
  2014年   275篇
  2013年   358篇
  2012年   396篇
  2011年   353篇
  2010年   230篇
  2009年   226篇
  2008年   267篇
  2007年   271篇
  2006年   249篇
  2005年   222篇
  2004年   185篇
  2003年   196篇
  2002年   194篇
  2001年   60篇
  2000年   56篇
  1999年   75篇
  1998年   46篇
  1997年   38篇
  1996年   35篇
  1995年   25篇
  1994年   35篇
  1993年   36篇
  1992年   42篇
  1991年   45篇
  1990年   36篇
  1989年   36篇
  1988年   36篇
  1987年   43篇
  1986年   31篇
  1985年   25篇
  1984年   45篇
  1982年   32篇
  1980年   25篇
  1979年   42篇
  1978年   32篇
  1977年   36篇
  1976年   38篇
  1975年   45篇
  1974年   27篇
  1972年   29篇
  1968年   25篇
排序方式: 共有6004条查询结果,搜索用时 10 毫秒
81.
The Saccharomyces cerevisiae Tmt1 gene product is the yeast homologue of the Escherichia coli enzyme that catalyzes the methyl esterification of trans-aconitate, a thermodynamically favored isomer of cis-aconitate and an inhibitor of the citric acid cycle. It has been proposed that methylation may attenuate trans-aconitate inhibition of aconitase and other enzymes of the cycle. Although trans-aconitate is a minor endogenous substrate of the Tmt1 enzyme in extracts of S. cerevisiae, the major endogenous substrate has yet to be identified. We show here that a trimethylsilylated derivative of the major methylated endogenous product of Tmt1 in yeast extracts has an identical gas chromatography retention time and an identical electron impact mass spectrum as one of the two possible monomethyl ester derivatives of (2R,3S)-3-isopropylmalate. (2R,3S)-3-Isopropylmalate is an intermediate of the leucine biosynthetic pathway that shares similar intermediates and reaction chemistry with the portion of the citric acid cycle from oxaloacetate to alpha-ketoglutarate via cis-aconitate. The Tmt1 methyltransferase recognizes (2R,3S)-3-isopropylmalate with similar kinetics as it does trans-aconitate, with respective K(m) values of 127 and 53 microM and V(max) values of 59 and 70 nmol min(-1) mg(-1) of protein in a Tmt1-overexpressed yeast extract. However, we found that isopropylfumarate, the direct homologue of trans-aconitate in the leucine biosynthetic pathway, was at best a very poor substrate for the Tmt1 yeast enzyme. Similarly, the direct homologue of 3-isopropylmalate in the citric acid cycle, isocitrate, is also a very poor substrate. This apparent change in specificity between the intermediates of these two pathways can be understood in terms of the binding of these substrates to the active site. These results suggest that the Tmt1 methyltransferase may work in two different pathways in two different ways: for detoxification in the citric acid cycle and for a possibly novel biosynthetic branch reaction of the leucine biosynthetic pathway.  相似文献   
82.
83.
Multiple Sclerosis (MS) is a complex multifactorial autoimmune disease, whose sex- and age-adjusted prevalence in Sardinia (Italy) is among the highest worldwide. To date, 233 loci were associated with MS and almost 20% of risk heritability is attributable to common genetic variants, but many low-frequency and rare variants remain to be discovered. Here, we aimed to contribute to the understanding of the genetic basis of MS by investigating potentially functional rare variants. To this end, we analyzed thirteen multiplex Sardinian families with Immunochip genotyping data. For five families, Whole Exome Sequencing (WES) data were also available. Firstly, we performed a non-parametric Homozygosity Haplotype analysis for identifying the Region from Common Ancestor (RCA). Then, on these potential disease-linked RCA, we searched for the presence of rare variants shared by the affected individuals by analyzing WES data. We found: (i) a variant (43181034 T > G) in the splicing region on exon 27 of CUL9; (ii) a variant (50245517 A > C) in the splicing region on exon 16 of ATP9A; (iii) a non-synonymous variant (43223539 A > C), on exon 9 of TTBK1; (iv) a non-synonymous variant (42976917 A > C) on exon 9 of PPP2R5D; and v) a variant (109859349-109859354) in 3′UTR of MYO16.  相似文献   
84.
Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or “empty” capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%.  相似文献   
85.
86.
Haspel J  Blanco C  Jacob J  Grumet M 《BioTechniques》2001,30(1):60-1, 64-6
We describe a novel Fc fusion protein system that can be cleaved by tobacco etch virus (TEV) protease. This system is desirable because it takes advantage of the high specificity of TEV protease and its activity at 4 degrees C. We produced two TEV-Fc fusion proteins that contain the first three Ig domains and all six Ig domains of the cell adhesion molecule L1. Both proteins were efficiently cleaved by TEV protease at 4 degrees C. Functional analysis of the cleavage products in neurite outgrowth assays showed they had similar activities to their parental Fc fusion proteins. Therefore, TEV-Fc fusion proteins may increase the utility and flexibility of the Fc fusion protein system.  相似文献   
87.
Summary The streptococcal plasmid ERL1 determining inducible resistance to erythromycin, lincomycin, and staphylomycin S was isolated by dye-buoyant density centrifugation and shown to have a molecular weight of about 17.5 Mdal, as revealed by sedimentation through neutral sucrose gradients. In SM60 cells entering the stationary phase its covalently closed circular form was present to the extent of 5 copies per chromosomal genome equivalent. ERL1 was subject to the DNA restriction and modification mechanism discovered in strain 56188. It did not apear to exercise restriction of phage DNA but mediated a partial release of the restricted growth of A25.  相似文献   
88.
Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1–25 Hz) with tri‐axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail‐beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim‐tunnel respirometer and free‐swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free‐swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail‐beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail‐beat frequency and swimming style, this study provides a reference point with a medium body‐sized sub‐carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration.  相似文献   
89.
ABSTRACT:?

The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of bio-molecules for plant-derived insecticides are presented.  相似文献   
90.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号