首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   130篇
  872篇
  2021年   6篇
  2020年   8篇
  2018年   6篇
  2017年   11篇
  2016年   9篇
  2015年   16篇
  2014年   10篇
  2013年   26篇
  2012年   24篇
  2011年   25篇
  2010年   14篇
  2009年   21篇
  2008年   29篇
  2007年   27篇
  2006年   42篇
  2005年   27篇
  2004年   37篇
  2003年   28篇
  2002年   26篇
  2001年   35篇
  2000年   25篇
  1999年   30篇
  1998年   11篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   13篇
  1993年   13篇
  1992年   18篇
  1991年   20篇
  1990年   31篇
  1989年   17篇
  1988年   18篇
  1987年   16篇
  1986年   15篇
  1985年   14篇
  1984年   15篇
  1983年   10篇
  1982年   14篇
  1981年   8篇
  1980年   8篇
  1979年   10篇
  1978年   9篇
  1977年   8篇
  1976年   10篇
  1974年   8篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1966年   5篇
排序方式: 共有872条查询结果,搜索用时 9 毫秒
51.
The activation of voltage-gated ion channels is controlled by the S4 helix, with arginines every third residue. The x-ray structures are believed to reflect an open-inactivated state, and models propose combinations of translation, rotation, and tilt to reach the resting state. Recently, experiments and simulations have independently observed occurrence of 310-helix in S4. This suggests S4 might make a transition from α- to 310-helix in the gating process. Here, we show 310-helix structure between Q1 and R3 in the S4 segment of a voltage sensor appears to facilitate the early stage of the motion toward a down state. We use multiple microsecond-steered molecular simulations to calculate the work required for translating S4 both as α-helix and transformed to 310-helix. The barrier appears to be caused by salt-bridge reformation simultaneous to R4 passing the F233 hydrophobic lock, and it is almost a factor-two lower with 310-helix. The latter facilitates translation because R2/R3 line up to face E183/E226, which reduces the requirement to rotate S4. This is also reflected in a lower root mean-square deviation distortion of the rest of the voltage sensor. This supports the 310 hypothesis, and could explain some of the differences between the open-inactivated- versus activated-states.  相似文献   
52.
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.  相似文献   
53.
54.
55.
Adult rat hepatocytes cultured on type IV collagen, fibronectin, or laminin and maintained in serum-free medium were examined by indirect immunofluorescence using polyclonal antibodies against extracellular matrix proteins. An extensive fibrillar matrix containing fibronectin and fibrin was detected in all hepatocyte cultures irrespective of the exogenous matrix substratum used to support cell adhesion. Fibrils radiated from the cell periphery and covered the entire culture substratum. In addition, thicker fibers or bundles of fibers were localized on top of hepatocytes. This matrix did not contain laminin or the major types of collagen found in the liver biomatrix (types I, III, and IV). Isolation of the fibrillar matrix and analysis on polyacrylamide gels under reducing conditions demonstrated a major 58-kD polypeptide, derived from beta-fibrinogen as indicated by immunoblotting and two-dimensional peptide mapping. Plasmin rapidly dissolved the matrix. Deposition of the fibrin matrix in hepatocyte cultures was arrested by hirudin, by specific heparin oligosaccharides that potentiate thrombin inhibition by antithrombin III, and by dermatan sulfate, an activator of heparin cofactor II-mediated inhibition of thrombin. The results indicate that hepatocytes in culture synthesize and activate coagulation zymogens. In the absence of inhibitory and fibrinolytic mechanisms, a fibrin clot is formed by the action of thrombin on fibrinogen. Fibronectin attaches to this fibrin clot but fails to elaborate a fibrillar matrix on its own in the presence of coagulation inhibitors.  相似文献   
56.
Some rRNA operons in E. coli have tRNA genes at their distal ends.   总被引:25,自引:0,他引:25  
We have previously isolated seven rRNA operons on plasmids or lambda transducing phages and identified various tRNAs encoded by these operons. Each of the seven operons has one of two different spacer tRNA gene arrangements between the genes for 16S and 23S rRNA: either tRNAGlu2 or both tRNAIle1 and tRNAAla1B genes. In addition, various tRNA genes are located at or near the distal ends of rRNA operons. In particular, genes for tRNATrp and tRNAAsp1 are located at the distal end of rrnC at 83 min on the E. coli chromosome. Experiments with various hybrid plasmids, some of which lack the rRNA promoter, have now demonstrated that this promoter is necessary for expression of the distal tRNA genes. Rifampicin run-out experiments have also provided evidence that the tRNATrp gene is located farther from its promoter than the spacer tRNA gene or the 5S RNA gene. These results confirm the localization of genes for tRNATrp and tRNAAsp1 at the distal end of rrnC and strongly suggest that they are co-transcribed with the genes for 16S, tRNAGlu2, 23S and 5S RNA. Other such distal tRNAs have been identified, and it is suggested that they too are part of rRNA operons.  相似文献   
57.
The D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate was investigated with focus on its substrate specificity, its kinetic properties, and a comparison of epimerase preparations from the Furth mastocytoma and bovine liver, which synthesize heparin and heparan sulfate, respectively. New substrates for the epimerase were prepared from the capsular polysaccharide of Escherichia coli K5, which had been labeled at C5 of its D-glucuronic and N-acetyl-D-glucosamine moieties by growing the bacteria in the presence of D-[5-(3)H]glucose. Following complete or partial ( approximately 50%) N-deacetylation of the polysaccharide by hydrazinolysis, the free amino groups were sulfated by treatment with trimethylamine.SO(3)complex, which yielded products that were recognized as substrates by the epimerase and released tritium from C5 of the D-glucuronyl residues upon incubation with the enzyme. Comparison of the kinetic properties of the two substrates showed that the fully N-sulfated derivative was the best substrate in terms of its K(m)value, which was significantly lower than that of its partially N-acetylated counterpart. The V(max)values for the E.coli polysaccharide derivatives were essentially the same but were both lower than that of the O-desulfated [(3)H]heparin used in our previous studies. Surprisingly, the apparent K(m)values for all three substrates increased with increasing enzyme concentration. The reason for this phenomenon is not entirely clear at present. Partially purified C5-epimerase preparations from the Furth mastocytoma and bovine liver, respectively, behaved similarly in terms of their reactivity towards the various substrates, but the variation in apparent K(m)values with enzyme concentration precluded a detailed comparison of their kinetic properties.  相似文献   
58.
Yang YG  Lindahl T  Barnes DE 《Cell》2007,131(5):873-886
Trex1 is the major 3' DNA exonuclease in mammalian cells, and mutations in the human TREX1 gene can cause Aicardi-Goutières syndrome, characterized by perturbed immunity. Similarly, Trex1(-/-) mice have an autoinflammatory phenotype; however, the mechanism of Trex1-deficient disease is unknown. We report that Trex1, ordinarily associated with the endoplasmic reticulum (ER), relocalizes to the S phase nucleus after gamma irradiation or hydroxyurea treatment. Notably, Trex1-deficient cells show defective G1/S transition and chronic ATM-dependent checkpoint activation, even in the absence of exogenous stress, correlating with persistent single-stranded DNA molecules produced in S phase, which accumulate in the ER. Our data indicate that Trex1 acts on a single-stranded DNA polynucleotide species generated from processing of aberrant replication intermediates to attenuate DNA damage checkpoint signaling and prevent pathological immune activation.  相似文献   
59.
TREX1, originally designated DNase III, was isolated as a major nuclear DNA-specific 3'-->5' exonuclease that is widely distributed in both proliferating and nonproliferating mammalian tissues. The cognate cDNA shows homology to the editing subunit of the Escherichia coli replicative DNA polymerase III holoenzyme and encodes an exonuclease which was able to serve a DNA-editing function in vitro, promoting rejoining of a 3' mismatched residue in a reconstituted DNA base excision repair system. Here we report the generation of gene-targeted Trex1(-/-) mice. The null mice are viable and do not show the increase in spontaneous mutation frequency or cancer incidence that would be predicted if Trex1 served an obligatory role of editing mismatched 3' termini generated during DNA repair or DNA replication in vivo. Unexpectedly, Trex1(-/-) mice exhibit a dramatically reduced survival and develop inflammatory myocarditis leading to progressive, often dilated, cardiomyopathy and circulatory failure.  相似文献   
60.
Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15N natural abundance measurements. Saprotrophic fungi were primarily confined to relatively recently (< 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants. Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号