首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   130篇
  872篇
  2021年   6篇
  2020年   8篇
  2018年   6篇
  2017年   11篇
  2016年   9篇
  2015年   16篇
  2014年   10篇
  2013年   26篇
  2012年   24篇
  2011年   25篇
  2010年   14篇
  2009年   21篇
  2008年   29篇
  2007年   27篇
  2006年   42篇
  2005年   27篇
  2004年   37篇
  2003年   28篇
  2002年   26篇
  2001年   35篇
  2000年   25篇
  1999年   30篇
  1998年   11篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   13篇
  1993年   13篇
  1992年   18篇
  1991年   20篇
  1990年   31篇
  1989年   17篇
  1988年   18篇
  1987年   16篇
  1986年   15篇
  1985年   14篇
  1984年   15篇
  1983年   10篇
  1982年   14篇
  1981年   8篇
  1980年   8篇
  1979年   10篇
  1978年   9篇
  1977年   8篇
  1976年   10篇
  1974年   8篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1966年   5篇
排序方式: 共有872条查询结果,搜索用时 15 毫秒
201.
Heparin-derived pentasaccharides with the general structures GlcN-GlcA/IdoA-GlcN-GlcA/IdoA-GlcN (where GlcA represents D-glucuronic acid and IdoA represents L-iduronic acid) and GlcNSO3-GlcA/IdoA-GlcNSO3-GlcA/IdoA- GlcNSO3 (where -NSO3 represents an N-sulfate group) were tested as exogenous sulfate acceptors in incubations with adenosine 3'-phosphate 5'-[35S]phosphosulfate and microsomal enzymes from a heparin-producing mouse mastocytoma. No transfer occurred to the N-unsubstituted pentasaccharide containing only L-iduronic acid, but the other three isomers incorporated various amounts of 35S, which was totally present in N-sulfate groups. After complete chemical N-sulfation, all four pentasaccharides served as acceptors in O-sulfotransferase reactions and incorporated from 20 to greater than 200 times as much radioactivity as did the nonsulfated parent compounds. The C-6 position of the internal glucosamine unit was labeled preferentially, irrespective of the structures of the adjacent hexuronic acid units. Significant 2-O-35S-sulfation of IdoA units occurred in both -IdoA-Glc-NSO3-GlcA- and -GlcA-GlcNSO3-IdoA- sequences, whereas no significant sulfation of GlcA residues was detected. The pentasaccharide GlcNSO3-GlcA-Glc-NSO3-GlcA-GlcNSO3 thus can be used as a selective substrate in assays for glucosaminyl-6-O-sulfotransferase activity. The antithrombin-binding region, essential for the blood anticoagulant activity of heparin, has been identified as a pentasaccharide sequence with the predominant structure GlcNR(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-++ +IdoA(2-OSO3)-GlcNSO3(6-OSO3) (where R represents either a sulfate or an acetyl group and -OSO3 represents an O-sulfate/ester sulfate group, with locations of O-sulfate groups indicated in parentheses) (Lindahl U., Thunberg, L., B?ckstr?m, G., Riesenfeld, J., Nordling, K., and Bj?rk, I. (1984) J. Biol. Chem. 259, 12368-12376). The products of [35S]sulfate transfer to the pentasaccharide GlcNSO3-GlcA-GlcNSO3-IdoA-GlcNSO3 contained molecules with high affinity for antithrombin, corresponding to 0.3-0.5% of the total label. Structural analysis suggested the occurrence of O-[35S]sulfate groups at both C-6 of the nonreducing terminal glucosamine unit and C-3 of the internal glucosamine unit. No products with high affinity for antithrombin were formed from the pentasaccharides that had a different monosaccharide sequence than the binding region; and moreover, these oligosaccharides appeared unable to incorporate glucosaminyl 3-O-sulfate groups. These findings point to the importance of the uronic acid sequence in the generation of the antithrombin-binding region of heparin.  相似文献   
202.
Cys-loop receptors constitute a superfamily of pentameric ligand-gated ion channels (pLGICs), including receptors for acetylcholine, serotonin, glycine and γ-aminobutyric acid. Several bacterial homologues have been identified that are excellent models for understanding allosteric binding of alcohols and anesthetics in human Cys-loop receptors. Recently, we showed that a single point mutation on a prokaryotic homologue (GLIC) could transform it from a channel weakly potentiated by ethanol into a highly ethanol-sensitive channel. Here, we have employed molecular simulations to study ethanol binding to GLIC, and to elucidate the role of the ethanol-enhancing mutation in GLIC modulation. By performing 1-µs simulations with and without ethanol on wild-type and mutated GLIC, we observed spontaneous binding in both intra-subunit and inter-subunit transmembrane cavities. In contrast to the glycine receptor GlyR, in which we previously observed ethanol binding primarily in an inter-subunit cavity, ethanol primarily occupied an intra-subunit cavity in wild-type GLIC. However, the highly ethanol-sensitive GLIC mutation significantly enhanced ethanol binding in the inter-subunit cavity. These results demonstrate dramatic effects of the F(14′)A mutation on the distribution of ligands, and are consistent with a two-site model of pLGIC inhibition and potentiation.  相似文献   
203.
DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease‐driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long‐ and short‐term survivors. Our method constructs causal network models of gene expression by combining genome‐wide DNA‐ and RNA‐level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease‐relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53‐interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large‐scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided.  相似文献   
204.
205.
206.
Cell surface proteins that bind to the Fc part of Ig are expressed by many strains of group A streptococci, an important human pathogen. Two such bacterial strains, AP4 and AP1, were shown to bind IgA and IgG, respectively, in a temperature-dependent manner. The binding of radiolabeled Ig to the bacterial cells was lower at 37 degrees C than at 22 and 4 degrees C. Similarly, protein Arp, the IgA-binding protein isolated from strain AP4, and protein H, the IgG-binding protein isolated from strain AP1, displayed a strong Ig-binding at 22 degrees C and lower temperatures, and virtually no binding at all at 37 degrees C. The effect was reversible: lowering of the temperature restored the binding and vice versa. A gradual shift between binding and nonbinding took place between 27 and 37 degrees C. Gel chromatography and velocity sedimentation centrifugation showed that protein Arp and protein H appeared as noncovalently associated dimers at 10 and 22 degrees C, and as monomers at 37 degrees C. These results strongly suggest that the dimerization of protein Arp and protein H, rather than the low temperature itself, yielded the strong Ig-binding of the proteins at 10 and 22 degrees C. Indeed, after covalent cross-linking of the dimers at 10 degrees C by incubation with low concentrations of glutaraldehyde, full Ig-binding was achieved even at 37 degrees C. A carboxyl-terminal proteolytic fragment of protein Arp, which completely lacked the IgA-binding capacity at any temperature, showed the same temperature-dependent dimerization as intact protein Arp, suggesting that the Ig-binding part of the protein is not required for dimerization. The implications of these results for the function of Ig-binding group A streptococcal proteins, and their role in the host-parasite relationship are discussed.  相似文献   
207.
Mammalian DNA ligases. Serological evidence for two separate enzymes.   总被引:5,自引:0,他引:5  
Mammalian cells contain two DNA ligase activities with different chromatographic properties, referred to as DNA ligase I and II. The major ligase activity present in calf thymus cell extracts, DNA ligase I, has been purified 1000-fold. After repeated injections of this enzyme with complete Freund's adjuvant into a rabbit, antibodies were induced that inhibit DNA ligase I from calf, human, mouse, and rabbit tissues. This antiserum did not affect DNA ligase II from the same sources to a detectable extent, even at a concentration 10-fold higher than that required for 98% inhibition of DNA ligase I. These data strongly indicate that the two mammalian DNA ligase activities are due to two separate enzymes, and not to two forms of the same enzyme. Both enzymes are present in the nuclear fraction, but are also found in the cytoplasmic fraction. Rapidly dividing cells (mouse ascites tumor cells and calf thymus) contain higher amounts of DNA ligase I than other cells (calf liver and spleen, human placenta, and rabbit spleen), while no such correlation was observed for DNA ligase II.  相似文献   
208.
A cDNA encoding a rat liver inducible aldehyde dehydrogenase carried in a pUC8 plasmid is expressed in E. coli as a dimeric enzyme molecule functionally and physically identical to the authentic rat enzyme. The cDNA appears to be transcribed using the lac promoter, but is translated from an initiator codon 174 base pairs from the 5' end of the cDNA. The aldehyde dehydrogenase polypeptide is not produced as a fusion protein. This is the first example of the production by E. coli of a catalytically active, multimeric eukaryotic protein which is not a fusion protein.  相似文献   
209.
DNA repair and recombination   总被引:1,自引:0,他引:1  
  相似文献   
210.
Different substrate specificities of the two DNA ligases of mammalian cells   总被引:12,自引:0,他引:12  
Mammalian cells contain the DNA ligases I and II. These enzymes show different molecular weights and heat labilities, and antibodies against ligase I do not inhibit ligase II. Here, the nonidentical substrate specificities of the enzymes are described. Under standard reaction conditions DNA ligase I, but not ligase II, catalyzes blunt-end joining of DNA, while ligase II is the only activity that joins oligo(dT) molecules hydrogen-bonded to poly(rA). These differences facilitate the distinction between the two enzymes and should permit further analysis of their functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号