首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.

Background

It is suspected that excess of brain cholesterol plays a role in Alzheimer’s disease (AD). Membrane-associated cholesterol was shown to be increased in the brain of individuals with sporadic AD and to correlate with the severity of the disease. We hypothesized that an increase of membrane cholesterol could trigger sporadic AD early phenotypes.

Results

We thus acutely loaded the plasma membrane of cultured neurons with cholesterol to reach the 30% increase observed in AD brains. We found changes in gene expression profiles that are reminiscent of early AD stages. We also observed early AD cellular phenotypes. Indeed we found enlarged and aggregated early endosomes using confocal and electron microscopy after immunocytochemistry. In addition amyloid precursor protein vesicular transport was inhibited in neuronal processes, as seen by live-imaging. Finally transient membrane cholesterol loading lead to significantly increased amyloid-β42 secretion.

Conclusions

Membrane cholesterol increase in cultured neurons reproduces most early AD changes and could thus be a relevant model for deciphering AD mechanisms and identifying new therapeutic targets.
  相似文献   
22.
Intraneuronal accumulation of hyperphosphorylated protein tau in paired helical filaments together with amyloid-beta peptide (Abeta) deposits confirm the clinical diagnosis of Alzheimer disease. A common cellular mechanism leading to the production of these potent toxins remains elusive. Here we show that, in cultured neurons, membrane depolarization induced a calcium-mediated transient phosphorylation of both microtubule-associated protein tau and amyloid precursor protein (APP), followed by a dephosphorylation of these proteins. Phosphorylation was mediated by glycogen synthase kinase 3 and cyclin-dependent kinase 5 protein kinases, while calcineurin was responsible for dephosphorylation. Following the transient phosphorylation of APP, intraneuronal Abeta accumulated and induced neurotoxicity. Phosphorylation of APP on Thr-668 was indispensable for intraneuronal accumulation of Abeta. Our data demonstrate that an increase in cytosolic calcium concentration induces modifications of neuronal metabolism of APP and tau, similar to those found in Alzheimer disease.  相似文献   
23.

Background  

During the development of the central nervous system (CNS), patterning processes along the dorsoventral (DV) axis of the neural tube generate different neuronal subtypes. As development progresses these neurons are arranged into functional units with varying cytoarchitecture, such as laminae or nuclei for efficient relaying of information. Early in development ventral and dorsal regions are similar in size and structure. Different proliferation rates and cell migration patterns are likely to result in the formation of laminae or nuclei, eventually. However, the underlying molecular mechanisms that establish these different structural arrangements are not well understood.  相似文献   
24.
Eutypa dieback is a devastating disease induced in vineyards by the fungal pathogen Eutypa lata . The fungus colonizes the xylem tissues of trunk and cordons but is never found in the annual canes. Nevertheless, dwarfed shoots and leaf necrosis observed in diseased plants indicate that a necrotic signal can spread at a distance from the infected area. Eutypine, a small cyclic molecule, and related compounds have been postulated as the toxins inducing these symptoms. In this work, we evidence that E. lata secreted other metabolites of polypeptidic nature which induced toxic effects on canes and leaves of vines, and on leaves of other plant materials. The polypeptide fraction (PF) isolated from culture medium of mycelium induced transitory H+ fluxes and membrane depolarization of plant cells. Complementary assays with plasma membrane vesicles (PMV) showed that H+-ATPase is a primary site of action as indicated by inhibition of the enzyme activity and increase of H+ conductance of plasma membrane. The toxic effect was also obvious on respiration and photosynthesis. All these impairments led to a hindering in cell energetics and, as a consequence, to an inhibition of uptake of assimilates. Treatment with PF also triggered biological events, characteristics of elicitation as suggested by the early responses on cell membrane described above, the activation of NADPH oxidase and the activation of Phenylalanine ammonia lyase (PAL).  相似文献   
25.
26.

Background  

The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene.  相似文献   
27.
Presenilin-1 (PS1) is required for the release of the intracellular domain of Notch from the plasma membrane as well as for the cleavage of the amyloid precursor protein (APP) at the gamma-secretase cleavage site. It remains to be demonstrated whether PS1 acts by facilitating the activity of the protease concerned or is the protease itself. PS1 could have a gamma-secretase activity by itself or could traffic APP and Notch to the appropriate cellular compartment for processing. Human APP 695 and PS1 were coexpressed in Sf9 insect cells, in which endogenous gamma-secretase activity is not detected. In baculovirus-infected Sf9 cells, PS1 undergoes endoproteolysis and interacts with APP. However, PS1 does not cleave APP in Sf9 cells. In CHO cells, endocytosis of APP is required for Abeta secretion. Deletion of the cytoplasmic sequence of APP (APPDeltaC) inhibits both APP endocytosis and Abeta production. When APPDeltaC and PS1 are coexpressed in CHO cells, Abeta is secreted without endocytosis of APP. Taken together, these results conclusively show that, although PS1 does not cleave APP in Sf9 cells, PS1 allows the secretion of Abeta without endocytosis of APP by CHO cells.  相似文献   
28.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   
29.
The cleavage of the transmembrane amyloid precursor protein (APP) by beta-secretase leaves the C-terminal fragment of APP, C99, anchored in the plasma membrane. C99 is subsequently processed by gamma-secretase, an unusual aspartyl protease activity largely dependent on presenilin (PS), generating the amyloid beta-peptide (Abeta) that accumulates in the brain of patients with Alzheimer's disease. It has been suggested that PS proteins are the catalytic core of this proteolytic activity, but a number of other proteins mandatory for gamma-secretase cleavage have also been discovered. The exact role of PS in the gamma-secretase activity remains a matter of debate, because cells devoid of PS still produce some forms of Abeta. Here, we used insect cells expressing C99 to demonstrate that the expression of presenilin 1 (PS1), which binds C99, not only increases the production of Abeta by these cells but also increases the intracellular levels of C99 to the same extent. Using pulse-chase experiments, we established that this results from an increased half-life of C99 in cells expressing PS1. In Chinese hamster ovary cells producing C99 from full-length human APP, similar results were observed. Finally, we show that a functional inhibitor of gamma-secretase does not alter the ability of PS1 to increase the intracellular levels of C99. This finding suggests that the binding of PS1 to C99 does not necessarily lead to its immediate cleavage by gamma-secretase, which could be a spatio-temporally regulated or an induced event, and provides biochemical evidence for the existence of a substrate-docking site on PS1.  相似文献   
30.
Cysteine inhibited mycelial growth of the pathogenic fungus affecting grapevines Eutypa lata Pers. Fr. Tul. and C. Tul. in a concentration-dependent manner. The threshold value (defined by the concentration inducing a growth inhibition higher than 5%) was 0.5 mM. A 10 mM concentration induced a complete inhibition of growth and triggered necrotic processes as evidenced by an increasing number of nuclei stained by propidium iodide. In conditions mimicking the plant environment (in particular, a pH near the apoplastic value, i.e. 5.5), 6 mM cysteine induced dramatic modifications in the structural organization of the mycelium (wall, mitochondria, vacuoles and nucleus) leading to death of the hyphae. The antifungal effect of the molecule increased at the acidic experimental pH (pH 4.1). The effect was highly specific to cysteine since modifying the molecular arrangement or masking the SH-function hindered the antifungal efficiency. Cysteine spectrum of action was broad among the various strains of E. lata tested. However, a lower efficiency was observed against fungal species intervening in other grapevine diseases (esca, black dead arm). Besides its direct antifungal effect, the role of cysteine presents particular interest in the fight against fungal pathogens since it triggered an excretion of ergosterol, a compound with elicitor properties. Therefore, cysteine may indirectly increase plant defense reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号