首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   11篇
  2013年   19篇
  2012年   19篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1974年   1篇
  1972年   2篇
  1968年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
71.
The pistachio green stink bug, Brachynema germari, has 3–5 generations per year and causes severe damages to pistachio crops in Iran. Physiological digestive processes, such as digestive carbohydrases, can be used to design new strategies in IPM programs for controlling this pest. The enzyme α-amylase digests starch during the initial stage of digestion. Complete breakdown of carbohydrates takes place in the midgut where α- and β-glucosidic activities are highest. Alpha-amylase and α- and β-glucosidase activities were found in the midgut and salivary glands of pistachio green stink bug adults. Overall enzyme activities were significantly higher in the midgut than in salivary glands. The highest α-amylase and α- and β-glucosidase activities were in section v3, whereas the lowest activities were in section v4. Vmax was higher and Km was lower in the midgut than in the salivary glands for these enzymes. In the pistachio green stink bug, the optimal pH was pH 5–6.5 and the optimal temperature was 30 °C to 35 °C for these enzymes. Alpha-amylase activity in the midgut and salivary glands decreased as the concentrations of MgCl2, EDTA and SDS increased. Enzyme activities in both midgut and salivary glands increased in the presence of NaCl, CaCl2, and KCl. NaCl had a negative effect on alpha-amylase extracted from salivary glands.  相似文献   
72.
Top‐down proteomics have recently started to gain attention as a novel method to provide insight into the structure of proteins in their native state, specifically the number and location of disulfide bridges. However, previous techniques still relied on complex and time‐consuming protein purification and reduction reactions to yield useful information. In this issue of Proteomics, Zhao et al. (high‐throughput screening of disulfide‐containing proteins in a complex mixture, Proteomics 2013, 13, 3256–3260) devise a clever and rapid method for high‐throughput determination of disulfides in proteins via reduction by tris(2‐carboxyethyl)phosphine. Their work provides the foundation necessary to undertake more complex experiments in biological samples.  相似文献   
73.
It is generally agreed that the protease inhibitor (PI) alleles PI*S (Val264Glu) and PI*Z (Lys342Glu) are the most common alpha 1 antitrypsin deficiency variants worldwide, but the PI*Mmalton allele (ΔPhe52) prevails over these variants in some Mediterranean regions. In eastern Tunisia (Mahdia), we screened 100 subjects with chronic obstructive pulmonary disease for these variants. The PI*S and PI*Z alleles were genotyped by the previously described SexAI/Hpγ99I RFLP–PCR. We provide here a new method for PI*Mmalton genotyping using mismatched RFLP–PCR. These methods are suitable for routine clinical application and can easily be reproduced by several laboratories, since they do not require extensive optimization, unlike the previously described bidirectional allele-specific amplification PCR for PI*Mmalton genotyping. Our results were in agreement with previous reports from central Tunisia (Kairouan), suggesting that the PI*Mmalton mutation is the most frequent alpha 1 antitrypsin deficiency-related mutation in Tunisia.  相似文献   
74.
Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte mitochondria lacking Mfn-2 are pleiomorphic and have the propensity to become enlarged. Consistent with an underlying mild mitochondrial dysfunction, Mfn-2-deficient mice display modest cardiac hypertrophy accompanied by slight functional deterioration. The absence of Mfn-2 is associated with a marked delay in mitochondrial permeability transition downstream of Ca(2+) stimulation or due to local generation of reactive oxygen species (ROS). Consequently, Mfn-2-deficient adult cardiomyocytes are protected from a number of cell death-inducing stimuli and Mfn-2 knockout hearts display better recovery following reperfusion injury. We conclude that in cardiac myocytes, Mfn-2 controls mitochondrial morphogenesis and serves to predispose cells to mitochondrial permeability transition and to trigger cell death.  相似文献   
75.
Ranked set sampling where sampling is based on visual judgment of the differences between the sizes of pairs of units or on a concomitant variable is reviewed. An alternative model for judgment ranking based on ratios of sizes of pairs of units is presented. Computation of the variance of a visual ranked set sampling estimator of the mean of a distribution is enabled via maximum likelihood estimation of the visual judgment error variance. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
76.

Background

Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and body mass, and has been implicated in endoplasmic reticulum (ER) stress. Herein, we assess the role of PTP1B in ER stress in brown adipocytes, which are key regulators of thermogenesis and metabolic response.

Methodology/Principal Findings

To determine the role of PTP1B in ER stress, we utilized brown adipose tissue (BAT) from mice with adipose-specific PTP1B deletion, and brown adipocytes deficient in PTP1B and reconstituted with PTP1B wild type (WT) or the substrate-trapping PTP1B D181A (D/A) mutant. PTP1B deficiency led to upregulation of PERK-eIF2α phosphorylation and IRE1α-XBP1 sub-arms of the unfolded protein response. In addition, PTP1B deficiency sensitized differentiated brown adipocytes to chemical-induced ER stress. Moreover, PERK activation and tyrosine phosphorylation were increased in BAT and adipocytes lacking PTP1B. Increased PERK activity resulted in the induction of eIF2α phosphorylation at Ser51 and better translatability of ATF4 mRNA in response to ER stress. At the molecular level, we demonstrate direct interaction between PTP1B and PERK and identify PERK Tyr615 as a mediator of this association.

Conclusions

Collectively, the data demonstrate that PTP1B is a physiologically-relevant modulator of ER stress in brown adipocytes and that PTP1B deficiency modulates PERK-eIF2α phosphorylation and protein synthesis.  相似文献   
77.
Key biological parameters of Anagyrus sp. nr. pseudococci reared on the citrus mealybug Planococcus citri (Risso) were determined. The mean longevity of female wasps was 21.1 days, the median lethal time (LT50) was 22 days, the mean number of offspring per female was 30.2 wasps and the sex ratio of the progeny was slightly male biased (1.1 males per female). Wasps fed with water showed a significantly lower longevity compared to that recorded for wasps fed with syrup for bee nutrition mixed with water. The longevity of female wasps was significantly higher compared to males when the syrup-water solution was provided as food. Longevity was significantly higher for female wasps fed with syrup and water in comparison with those exposed to host mealybugs. The mean development time of female and male wasps was 14.7±0.1 and 14.5±0.1 days, respectively.  相似文献   
78.
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca(2+) load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+)-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+) load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.  相似文献   
79.
The aryl hydrocarbon receptor (AHR) controls several inflammatory and metabolic pathways involved in various diseases, including the development of arthritis. Here, we investigated the role of AHR activation in IL-22-dependent acute arthritis using the K/BxN serum transfer model. We observed an overall reduction of cytokine expression in Ahr-deficient mice, along with decreased signs of joint inflammation. Conversely, we report worsened arthritis symptoms in Il-22 deficient mice. Pharmacological stimulation of AHR with the agonist VAG539, as well as injection of recombinant IL-22, given prior arthritogenic triggering, attenuated inflammation and reduced joint destruction. The protective effect of VAG539 was abrogated in Il-22 deficient mice. Finally, conditional Ahr depletion of Rorc-expressing cells was sufficient to attenuate arthritis, thereby uncovering a previously unsuspected role of AHR in type 3 innate lymphoid cells during acute arthritis.  相似文献   
80.
The last two decades have witnessed striking advances in our understanding of the biological factors underlying the development of Follicular lymphoma (FL). Development of newer treatment approaches have improved the outlook for many individuals with these disorders; however, with these advances come new questions. Given the long-term survival of patients with FL, drugs with favourable side-effect profile and minimal long-term risks are desired. FL is incurable with current treatment modalities. It often runs an indolent course with multiple relapses and progressively shorter intervals of remission. The identification of new targets and development of novel targeted therapies is imperative to exploit the biology of FL while inherently preventing relapse and prolonging survival. This review summarizes the growing body of knowledge regarding novel therapeutic targets, enabling the concept of individualized targeted therapy for the treatment of FL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号