首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   92篇
  2018篇
  2022年   12篇
  2021年   19篇
  2020年   16篇
  2019年   20篇
  2018年   26篇
  2017年   19篇
  2016年   46篇
  2015年   59篇
  2014年   64篇
  2013年   115篇
  2012年   127篇
  2011年   116篇
  2010年   78篇
  2009年   67篇
  2008年   115篇
  2007年   134篇
  2006年   100篇
  2005年   141篇
  2004年   125篇
  2003年   99篇
  2002年   103篇
  2001年   33篇
  2000年   24篇
  1999年   29篇
  1998年   29篇
  1997年   20篇
  1996年   29篇
  1995年   19篇
  1994年   21篇
  1993年   18篇
  1992年   17篇
  1991年   17篇
  1990年   16篇
  1989年   12篇
  1988年   13篇
  1987年   4篇
  1986年   15篇
  1985年   16篇
  1984年   10篇
  1983年   13篇
  1982年   8篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   8篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1972年   3篇
排序方式: 共有2018条查询结果,搜索用时 15 毫秒
71.
72.
73.
Regulated transport of proteins to distinct plasma membrane domains is essential for the establishment and maintenance of cell polarity in all eukaryotic cells. The Rab family small G proteins play a crucial role in determining the specificity of vesicular transport pathways. Rab3B and Rab13 localize to tight junction in polarized epithelial cells and cytoplasmic vesicular structures in non-polarized fibroblasts, but their functions are poorly understood. Here we examined their roles in regulating the cell-surface transport of apical p75 neurotrophin receptor (p75NTR), basolateral low-density lipoprotein receptor (LDLR), and tight junctional Claudin-1 using transport assay in non-polarized fibroblasts. Overexpression of Rab3B mutants inhibited the cell-surface transport of LDLR, but not p75NTR and Claudin-1. In contrast, overexpression of Rab13 mutants impaired the transport of Claudin-1, but not LDLR and p75NTR. These results suggest that Rab3B and Rab13 direct the cell-surface transport of LDLR and Claudin-1, respectively, and may contribute to epithelial polarization.  相似文献   
74.
An extremely low‐frequency magnetic field (ELF‐MF) is generated by power lines and household electrical devices. Many studies have suggested an association between chronic ELF‐MF exposure and anxiety and/or depression. The mechanism of these effects is assumed to be a stress response induced by ELF‐MF exposure. However, this mechanism remains controversial. In the present study, we investigated whether chronic ELF‐MF exposure (intensity, 3 mT; total exposure, 200 h) affected emotional behavior and corticosterone synthesis in mice. ELF‐MF‐treated mice showed a significant increase in total immobility time in a forced swim test and showed latency to enter the light box in a light–dark transition test, compared with sham‐treated (control) mice. Corticosterone secretion was significantly high in the ELF‐MF‐exposed mice; however, no changes were observed in the amount of the adrenocorticotropic hormone and the expression of genes related to stress response. Quantification of the mRNA levels of adrenal corticosteroid synthesis enzymes revealed a significant reduction in Cyp17a1 mRNA in the ELF‐MF‐exposed mice. Our findings suggest the possibility that high intensity and chronic exposure to ELF‐MF induces an increase in corticosterone secretion, along with depression‐ and/or anxiety‐like behavior, without enhancement of the hypothalamic–pituitary–adrenal axis. Bioelectromagnetics 34:43–51, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
75.
Plaque ruptures in atherosclerotic carotid arteries cause cerebral strokes. Accumulation of lipoproteins in the deep intimal layer forms a lipid core (LC), whose progression may be enhanced by mechanical conditions on the arterial wall. In this study, we investigated the pressure conditions of a liquid LC through numerical simulations of a sliced segment finite element (FE) model and a three-dimensional (3D) symmetric FE model. A model of an LC filled with nearly incompressible fluid was compared with incompressible and soft neo-Hookean LC models in a static FE analysis. Material constants for a nonlinear hyperelastic model of the arterial wall were identified based on an inflation test using a tube specimen. The results from the FE analysis of a sliced segment model show an LC fluid pressure as low as 1.9 kPa at a blood pressure of 16 kPa. A neo-Hookean LC model with a Young’s modulus of 0.06 kPa produced an almost uniform pressure in the LC within an error of 1.3 %. The 3D model predicted a similar level of LC pressure. Such low fluid pressure in the LC region may enhance the infiltration of lipoproteins and other substances from the lumen and facilitate transport through microvessels from the adventitia to the LC.  相似文献   
76.
Mycophenolic acid (MPA), known as an inhibitor of inosine monophosphate dehydrogenase (IMPDH), was found to inhibit the differentiation of 3T3-L1 pre-adipocytes into mature adipocytes. Although the effect of MPA was attributed to inhibition of IMPDH, we uncovered a hidden biological property of MPA as an agonist of peroxisome proliferator activated receptor gamma (PPARgamma).  相似文献   
77.
The fate of calicivirus in oysters in a 10-day depuration was assessed. The norovirus gene was persistently detected from artificially contaminated oysters during the depuration, whereas feline calicivirus in oysters was promptly eliminated. The prolonged observation of norovirus in oysters implies the existence of a selective retention mechanism for norovirus within oysters.  相似文献   
78.
Organic solar cells based on two benzodithiophene‐based polymers (PTB7 and PTB7‐Th) processed at square centimeter‐size under inert atmosphere and ambient air, respectively, are investigated. It is demonstrated that the performance of solar cells processed under inert atmosphere is not limited by the upscaling of photoactive layer and the interfacial layers. Thorough morphological and electrical characterizations of optimized layers and corresponding devices reveal that performance losses due to area enlargement are only caused by the sheet resistance of the transparent electrode reducing the efficiency from 9.3% of 7.8% for PTB7‐Th in the condition that both photoactive layer and the interfacial layers are of high layer quality. Air processing of photoactive layer and the interfacial layers into centimeter‐sized solar cells lead to additional, but only slight, losses (<10%) in all photovoltaic parameters, which can be addressed to changes in the electronic properties of both active layer and ZnO layers rather than changes in layer morphology. The demonstrated compatibility of polymer solar cells using solution‐processed photoactive layer and interfacial layers with large area indicates that the introduction of a standard active area of 1 cm² for measuring efficiency of organic record solar cells is feasible. However electric standards for indium tin oxides (ITO) or alternative transparent electrodes need to be developed so that performance of new photovoltaic materials can be compared at square centimeter‐size.  相似文献   
79.
Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.  相似文献   
80.
The restriction endonuclease AatII was purified from cell-free extracts of Acetobacter aceti IFO 3281 by streptomycin treatment, ammonium sulfate fractionation, combined column chromatographies on DEAE-Toyopearl 650S, heparin-Sepharose CL-6B and DEAE-Sepharose CL-6B and FPLC on Mono Q and on Superose 12 (gel filtration). The purified enzyme was homogeneous on SDS-polyacrylamide gel disk electrophoresis. The relative molecular mass of the purified enzyme was 190,000 daltons by gel filtration. The SDS-polyacrylamide gel disk electrophoresis gave the relative molecular mass of 47,500 daltons. These data indicated that the purified, native enzyme is a tetramer (190,000 daltons) composed of four 47,500-dalton subunits. The isoelectric point of the enzyme was 6.0. The purified enzyme was intensely activated by manganese ion (50-fold increase or more when compared with magnesium ion). The enzyme worked best at 37°C and pH 8.5 in a reaction mixture (50 μl) containing 1.0 μg λDNA, 10 mm Tris-HCl, 7 mm 2-mercaptoethanol, 7 mm MnCl2 and 50 mm NaCl. The enzyme recognizes the same palindromic hexanucleotide sequence 5′-GACGTC-3′, cuts between T and C and produces a 3′-tetranucleotide extension in the presence of MnCl2, as it does in the presence of MgCl2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号