首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   20篇
  975篇
  2015年   10篇
  2014年   13篇
  2013年   26篇
  2012年   17篇
  2011年   12篇
  2010年   32篇
  2009年   23篇
  2008年   32篇
  2007年   47篇
  2006年   17篇
  2005年   23篇
  2004年   16篇
  2002年   14篇
  1999年   14篇
  1998年   11篇
  1997年   17篇
  1996年   13篇
  1995年   12篇
  1994年   13篇
  1993年   20篇
  1992年   12篇
  1991年   19篇
  1990年   16篇
  1989年   12篇
  1988年   10篇
  1987年   17篇
  1986年   13篇
  1985年   11篇
  1984年   14篇
  1982年   13篇
  1980年   12篇
  1979年   12篇
  1976年   12篇
  1975年   10篇
  1974年   15篇
  1973年   18篇
  1972年   16篇
  1971年   10篇
  1970年   8篇
  1969年   9篇
  1968年   10篇
  1965年   36篇
  1964年   19篇
  1963年   32篇
  1962年   23篇
  1961年   33篇
  1960年   21篇
  1959年   27篇
  1958年   27篇
  1957年   12篇
排序方式: 共有975条查询结果,搜索用时 0 毫秒
51.
Summary

Parthenogenesis following oocyte activation has been observed in a number of marine invertebrates, but the fate of parthenogenesis in bivalve mollusc embryos is unclear. We used the dwarf surf clam, Mulinia lateralis, to examine parthenogenetic development of KC1-activated oocytes using the polar body suppressing agents caffeine and heat or cytochalasin B. Development was followed by epifluorescence microscopy and flow-cytometric analysis using the DNA-specific fluorochrome DAPI. All agents suppressed polar body formation to some degree, putatively increasing the ploidy level and retaining a meiotic centrosome in the zygote; but the zygotes failed to develop normally. Failure of the zygotes to develop suggests that the meiotic centrosome is incapable of participating in mitosis in bivalves.  相似文献   
52.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   
53.
The hypothesis of this study was that colonizers in decaying leaf litter prefer native species (Erythrina verna) to exotic ones (Eucalyptus camaldulensis and Protium heptaphyllum). Therefore, native species are expected to show higher breakdown rates, increased biomass, richness and density of invertebrate species, and increased biomass of decomposer fungi. Breakdown of leaf litter from these three species was assessed in an Atlantic Rain Forest stream. Four samples were collected during a period of 90 days and washed on a sieve to separate the invertebrates. Then, a series of leaf disks were cut to determine ash‐free dry mass and fungal biomass, and the remaining material was oven‐dried to determine the dry weight. Eucalyptus camaldulensis and E. verna showed higher breakdown rates than P. heptaphyllum, due to differences in leaf physical and chemical characteristics. The harder detritus (P. heptaphyllum) broke down more slowly than detritus with high concentrations of labile compounds (E. camaldulensis). The density of the invertebrates associated with detritus increased with time. There were no differences in density, taxonomic richness or biomass of invertebrates among the leaf types, which indicated that the invertebrates did not distinguish between exotic and native detritus. Fungal colonization varied among samples; E. camaldulensis showed the lowest ergosterol concentrations, mainly due to a high concentration of total phenolics. The detritus with the highest hardness value was colonized most slowly by fungi. These results showed that leaf breakdown in Atlantic Rain Forest streams could be affected either by changes in riparian vegetation, or by becoming more savanna‐like process due to climate change.  相似文献   
54.
55.
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号