首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868037篇
  免费   103350篇
  国内免费   887篇
  2018年   7391篇
  2016年   10031篇
  2015年   14396篇
  2014年   16968篇
  2013年   23649篇
  2012年   26933篇
  2011年   27437篇
  2010年   18294篇
  2009年   16936篇
  2008年   24396篇
  2007年   25439篇
  2006年   23867篇
  2005年   22964篇
  2004年   22886篇
  2003年   21805篇
  2002年   21049篇
  2001年   35968篇
  2000年   36274篇
  1999年   29169篇
  1998年   11018篇
  1997年   11256篇
  1996年   10756篇
  1995年   10334篇
  1994年   10024篇
  1993年   10036篇
  1992年   25079篇
  1991年   24866篇
  1990年   24437篇
  1989年   23712篇
  1988年   22127篇
  1987年   21145篇
  1986年   19928篇
  1985年   20047篇
  1984年   16773篇
  1983年   14699篇
  1982年   11233篇
  1981年   10516篇
  1980年   9791篇
  1979年   16292篇
  1978年   12997篇
  1977年   11760篇
  1976年   11154篇
  1975年   12582篇
  1974年   13433篇
  1973年   13049篇
  1972年   12095篇
  1971年   10872篇
  1970年   9365篇
  1969年   8992篇
  1968年   8217篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
901.
It is reported here that Sendai virus envelopes (SVE) can be used to transfect multiple copies of DNA segments of different varieties and size. This capability further increases the usefulness of SVE. In addition, the ability to simultaneously transfect multiple copies of different genome segments promises to be a powerful tool in the field of molecular biology. The simultaneous transfection of NEO gene and cytomegalovirus immediate early antigen gene was successfully done. Sendai virus envelopes (SVE)1 have been used successfully to study carcinogenesis of Epstein-Barr virus (1, 2). SVE have been shown to have a large carrying capacity (3) for the microinjection of macromolecules into target cells. SVE are hollow vesicles constructed from the viral proteins hemagglutinin HN and fusion factor F.  相似文献   
902.
903.
Cytosolic protein phosphotyrosine (PPT) phosphatase was measured using a new substrate, Tyr(32P)-labeled bovine serum albumin. Kidney was found as a particularly rich tissue source of PPT-phosphatase activity, containing twice as much as liver and over 10-fold more than brain, heart, lung, or skeletal muscle. An affinity column of Zn2+-iminodiacetate agarose adsorbed up to 60% of the PPT-phosphatase present in kidney extracts. Subsequent chromatography on DEAE-Sepharose separated the phosphatase into two peaks, labeled I and II, that had Mr = 34,000 and 37,000, respectively, upon gel filtration with Sephadex G-75 Superfine. Overall purification of 850- and 1100-fold was achieved with a net 4% yield. Both phosphatases hydrolyzed p-nitrophenylphosphate as well as the protein substrate in the presence of EDTA. Peak I phosphatase activity displayed a neutral pH optimum, had an absolute requirement for sulfhydryl compounds, and was sensitive to trypsin, whereas Peak II activity had an acidic pH optimum and was active without mercaptans. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with S. aureus V8 protease. The results show that multiple forms of PPT phosphatase specifically interact with Zn2+ and provide a basis for further structural and functional comparisons among different members of the phosphoprotein phosphatase family.  相似文献   
904.
The role of pH, KCl, ATP, water activity, and temperature in ATP synthesis from ADP and Pi was investigated in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. In totally aqueous medium, the synthesis of ATP was inhibited by ATP, KCl, and pH values above 6.5. When the water activity of the medium was decreased by the addition of 30% (v/v) dimethyl sulfoxide, the synthesis of ATP was no longer inhibited by ATP; it was activated by KCl and the optimum pH changed from 6.5 to 7.5. In totally aqueous medium, the concentration of MgCl2 needed for half-maximal synthesis of ATP was found to vary with the temperature of the assay medium; at 35 degrees C it was 1 mM and increased to a value higher than 10 mM when the temperature was decreased to 15 degrees C. In the presence of 30% dimethyl sulfoxide, maximal synthesis of ATP was attained in presence of 0.05 mM MgCl2 at both 15 and 35 degrees C. The hypothesis is raised that in the living cell water structure may play a role in regulating the synthesis of ATP observed during the reversal of the Ca2+ pump of the sarcoplasmic reticulum.  相似文献   
905.
906.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
907.
The influence of malate and cytochrome c on fatty acid oxidation under control and ischemic conditions was investigated. In the medium without malate, cytochrome did not make fatty acid oxidation decreased during ischemia return to normal. Oxidation in the media containing malate and cytochrome did not differ from control only when it was measured after preliminary oxidation of endogenous substrates. The ratio of palmitoyl-CoA and palmitoyl carnitine to the respiration rates at state 3 was unchanged at 60 min ischemia. Apparently, no changes in carnitine acyltransferase playing a role in oxidation of palmitoyl-CoA took place. Thus, the decrease of fatty acid oxidation at early periods of ischemia is largely caused by a reduction in the content of cytochrome c and intermediates of Krebs cycle in the mitochondria.  相似文献   
908.
Studies with substrate analogues and the pH optimum indicated the involvement of carboxyl group in the active site of goat carboxypeptidase A. Chemical modification of the enzyme with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide methoI -p-toluene sulphonate, a carboxyl specific reagent, led to loss of both esterase and peptidase activities. Protection studies showed that this carboxyl group was in the active site and was protected by Βp-phenylpropionic acid and glycyl-L-tyrosine. Kinetic studies also confirmed the involvement of carboxylic group because the enzyme modification with water soluble carbodiimide was a two step reaction which excluded the possibility of tyrosine or lysine which are known to give a one step reaction with this reagent  相似文献   
909.
We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.  相似文献   
910.
It was shown in in vitro experiments that etmozin at a concentration of 100 micrograms/ml significantly suppressed (by 21%) platelet aggregation induced by ADP, but it had no effect on platelet aggregation induced by arachidonic acid. In in vivo experiments etmozin was found to cause a marked suppression of tendon collagen-induced platelet aggregation in the doses 2-5 mg/kg having antiarrhythmic activity. Under suppressed platelet aggregation induced by indomethacin, the prostaglandin biosynthesis blocker etmozin displayed no antiaggregation effect. It is suggested that etmozin effects on ADP release from platelets play the main role in the mechanism of its antiaggregation action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号