首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   9篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   6篇
  2011年   16篇
  2010年   11篇
  2009年   6篇
  2008年   11篇
  2007年   11篇
  2006年   13篇
  2005年   6篇
  2004年   10篇
  2003年   5篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1971年   2篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
51.
The results of 250 cadaver kidney transplants performed at this hospital between May 1968 and December 1974 were analysed. A functioning transplant was defined strictly as one that maintained the recipient in good health with a serum creatinine below 442 mumol/1 (5 mg/100 ml) without any need for dialysis. The proportions of kidneys functioning after one, two, and three years were 40-4%, 33-9%, and 31-1% respectively, the corresponding survival rates of patients being 62-6%, 57-4%, and 43-8%. The primary failure rate overall was 21-6%, while the failure rates for first, second, and third transplants were 18-1%, 39-9%, and 66-7% respectively. Half of the primary failures were attributed to the use of cadaver kidneys with abnormal vasculature or long ischaemic times or originating from non-ventilated donors. Of the initially successful transplants 49% were subsequently lost due to rejection (53%) or death of the patient with a functioning transplant (46%), and of the secondary losses 58% occurred within three months of transplantation. HLA matching of donor and recipient for two or more antigens was associated with a significant increase in transplant survival--46% at three years as opposed to 9-5% at three years for kidneys with poorer matches.  相似文献   
52.
The mechanism of membrane targeting of human sphingosine kinase 1   总被引:2,自引:0,他引:2  
Sphingosine 1-phosphate is a bioactive sphingolipid that regulates cell growth and suppresses programmed cell death. The biosynthesis of sphingosine 1-phosphate is catalyzed by sphingosine kinase (SK) but the mechanism by which the subcellular localization and activity of SK is regulated in response to various stimuli is not fully understood. To elucidate the origin and structural determinant of the specific subcellular localization of SK, we performed biophysical and cell studies of human SK1 (hSK1) and selected mutants. In vitro measurements showed that hSK1 selectively bound phosphatidylserine over other anionic phospholipids and strongly preferred the plasma membrane-mimicking membrane to other cellular membrane mimetics. Mutational analysis indicates that conserved Thr54 and Asn89 in the putative membrane-binding surface are essential for lipid selectivity and membrane targeting both in vitro and in the cell. Also, phosphorylation of Ser225 enhances the membrane affinity and plasma membrane selectivity of hSK1, presumably by modulating the interaction of Thr54 and Asn89 with the membrane. Collectively, these studies suggest that the specific plasma membrane localization and activation of SK1 is mediated largely by specific lipid-protein interactions.  相似文献   
53.
The estrogen receptor (ER) mediates estrogenic activity in a variety of organs, including those in the reproductive, cardiovascular, immune, and central nervous systems. Experimental studies have demonstrated that 17beta-estradiol (E2) protects the heart from ischemia-reperfusion injury. Two estrogen receptors, ER alpha and ER beta, mediate the actions of estrogen; however, it is not certain which ER mediates the cardioprotective effects of E2. In the present study, the ER-selective agonists 4,4',4'-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol (PPT; ER alpha) and 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; ER beta) were assessed for their cardioprotective potential in an in vivo rabbit model of ischemia-reperfusion injury. Anesthetized female rabbits were administered PPT (3 mg/kg), DPN (3 mg/kg), E2 (20 microg/rabbit), or vehicle intravenously 30 min before a 30-min occlusion of the left anterior descending coronary artery followed by 4 h of reperfusion. Acute treatment with E2 (17.7 +/- 2.9%; P < 0.001) and PPT (18.1 +/- 2.9%; P < 0.001), but not DPN (45.3 +/- 2.4%) significantly decreased infarct size as a percent of area at risk compared with vehicle (45.3 +/- 2.4%). Coadministration of PPT or E2 with the ER antagonist ICI-182,780 limited the infarct size-sparing effect of the compounds (43.8 +/- 6.6% and 40.6 +/- 5.7% respectively, expressed as a percentage of risk region). PPT reduced the release of cardiac-specific troponin-I and reduced the tissue deposition of the membrane attack complex and C-reactive protein similar to that of E2. The results indicate that activation of ER alpha, but not ER beta, is required for the observed cardioprotective effects of E2.  相似文献   
54.
Mycobacterium tuberculosis (M.tb) is a leading cause of global infectious mortality. The pathogenesis of tuberculosis involves inhibition of phagosome maturation, leading to survival of M.tb within human macrophages. A key determinant is M.tb-induced inhibition of macrophage sphingosine kinase (SK) activity, which normally induces Ca2+ signaling and phagosome maturation. Our objective was to determine the spatial localization of SK during phagocytosis and its inhibition by M.tb. Stimulation of SK activity by killed M.tb, live Staphylococcus aureus, or latex beads was associated with translocation of cytosolic SK1 to the phagosome membrane. In contrast, SK1 did not associate with phagosomes containing live M.tb. To characterize the mechanism of phagosomal translocation, live cell confocal microscopy was used to compare the localization of wild-type SK1, catalytically inactive SK1G82D, and a phosphorylation-defective mutant that does not undergo plasma membrane translocation (SK1S225A). The magnitude and kinetics of translocation of SK1G82D and SK1S225A to latex bead phagosomes were indistinguishable from those of wild-type SK1, indicating that novel determinants regulate the association of SK1 with nascent phagosomes. These data are consistent with a model in which M.tb inhibits both the activation and phagosomal translocation of SK1 to block the localized Ca2+ transients required for phagosome maturation.  相似文献   
55.
Ceramidases are enzymes involved in regulating cellular levels of ceramides, sphingoid bases, and their phosphates. Based on sequence homology to the yeast alkaline ceramidases YPC1p (Mao, C., Xu, R., Bielawska, A., and Obeid, L. M. (2000) J. Biol. Chem. 275, 6876--6884) and YDC1p (Mao, C., Xu, R., Bielawska, A., Szulc, Z. M., and Obeid, L. M. (2000) J. Biol Chem. 275, 31369--31378), we report the identification and cloning of a cDNA encoding for a novel human alkaline ceramidase (aPHC) that hydrolyzes phytoceramide selectively. Northern blot analysis showed that aPHC was ubiquitously expressed, with the highest expression in placenta. Green fluorescent protein tagging showed that it was localized in both the Golgi apparatus and endoplasmic reticulum. Overexpression of aPHC in mammalian cells elevated in vitro ceramidase activity toward N-4-nitrobenz-2-oxa-1,3-diazole-C(12)-phytoceramide. Its expression in a yeast mutant strain devoid of any ceramidase activity restored the ceramidase activity and caused an increase in the hydrolysis of phytoceramide in yeast cells, thus leading to the decreased biosynthesis of sphingolipids. These data collectively suggest that, similar to the yeast phytoceramidase YPC1p, aPHC has phytoceramidase activity both in vitro and in cells; hence, it is a functional homolog of the yeast phytoceramidase YPC1p. However, in contrast to YPC1p, aPHC exhibited no reverse activity of ceramidase either in vitro or in cells. Biochemical characterization showed that aPHC had a pH optimum of 9.5, was activated by Ca(2+), but was inhibited by Zn(2+) and sphingosine. Substrate specificity showed that aPHC hydrolyzed phytoceramide preferentially. Together, these data demonstrate that aPHC is a novel human alkaline phytoceramidase, the first mammalian alkaline ceramidase to be identified as being specific for the hydrolysis of phytoceramide.  相似文献   
56.
In the yeast Saccharomyces cerevisiae, we have demonstrated a necessary role for sphingolipids in the heat stress response through inhibition of nutrient import (Chung, N., Jenkins, G. M., Hannun, Y. A., Heitman, J., and Obeid, L. M. (2000) J. Biol. Chem. 275, 17229-17232). In this study, we used a combination of pharmacological and genetic approaches to determine which endogenous sphingolipid is the likely mediator of growth inhibition. When cells were treated with exogenous phytosphingosine (PHS, 20 microm) or structurally similar or metabolically related molecules, including 3-ketodihydrosphingosine, dihydrosphingosine, C(2)-phytoceramide (PHC), and stearylamine, only PHS inhibited growth. Also, PHS was shown to inhibit uptake of uracil, tryptophan, leucine, and histidine. Again this effect was specific to PHS. Because of the dynamic nature of sphingolipid metabolism, however, it was difficult to conclude that growth inhibition was caused by PHS itself. By using mutant yeast strains defective in various steps in sphingolipid metabolism, we further determined the specificity of PHS. The elo2Delta strain, which is defective in the conversion of PHS to PHC, was shown to have slower biosynthesis of ceramides and to be hypersensitive to PHS (5 microm), suggesting that PHS does not need to be converted to PHC. The lcb4Delta lcb5Delta strain is defective in the conversion of PHS to PHS 1-phosphate, and it was as sensitive to PHS as the wild-type strain. The syr2Delta mutant strain was defective in the conversion of DHS to PHS. Interestingly, this strain was resistant to high concentrations of DHS (40 microm) that inhibited the growth of an isogenic wild-type strain, demonstrating that DHS needs to be converted to PHS to inhibit growth. Together, these data demonstrate that the active sphingolipid species that inhibits yeast growth is PHS or a closely related and yet unidentified metabolite.  相似文献   
57.
To study genetic evolution of Moroccan influenza A(H1N1)pdm09 virus strains, we conducted a molecular characterization of the hemagglutinin gene subunit 1 (HA1) of 36 influenza A(H1N1)pdm09 virus strains. The stains were collected from patients in Rabat and Casablanca during two influenza seasons 2009–2010 and 2010–2011. Nucleotide and amino acid sequences of 14 influenza A(H1N1)pdm09 virus strains from 2009 to 2010 were ~97 and 99 %, respectively, similar to the reference strain A/California/07/2009 (H1N1). Phylogenetic analysis of 22 influenza A(H1N1)pdm09 virus strains from 2010 to 2011 revealed a co-circulation of three well-described different genetic groups. Most important, none of the identified groups showed significant changes at the antigenic site of the virus HA1 subunit which may alter the efficacy of California/07/2009 (H1N1) vaccine.  相似文献   
58.

Introduction

Millions of HIV-infected Africans are living longer due to long-term antiretroviral therapy (ART), yet little is known about glucose metabolism disorders in this group. We aimed to compare the prevalence of glucose metabolism disorders among HIV-infected adults on long-term ART to ART-naïve adults and HIV-negative controls, hypothesizing that the odds of glucose metabolism disorders would be 2-fold greater even after adjusting for possible confounders.

Methods

In this cross-sectional study conducted between October 2012 and April 2013, consecutive adults (>18 years) attending an HIV clinic in Tanzania were enrolled in 3 groups: 153 HIV-negative controls, 151 HIV-infected, ART-naïve, and 150 HIV-infected on ART for ≥ 2 years. The primary outcome was the prevalence of glucose metabolism disorders as determined by oral glucose tolerance testing. We compared glucose metabolism disorder prevalence between each HIV group vs. the control group by Fisher’s exact test and used multivariable logistic regression to determine factors associated with glucose metabolism disorders.

Results

HIV-infected adults on ART had a higher prevalence of glucose metabolism disorders (49/150 (32.7%) vs.11/153 (7.2%), p<0.001) and frank diabetes mellitus (27/150 (18.0%) vs. 8/153 (5.2%), p = 0.001) than HIV-negative adults, which remained highly significant even after adjusting for age, gender, adiposity and socioeconomic status (OR = 5.72 (2.78–11.77), p<0.001). Glucose metabolism disorders were significantly associated with higher CD4+ T-cell counts. Awareness of diabetes mellitus was <25%.

Conclusions

HIV-infected adults on long-term ART had 5-fold greater odds of glucose metabolism disorders than HIV-negative controls but were rarely aware of their diagnosis. Intensive glucose metabolism disorder screening and education are needed in HIV clinics in sub-Saharan Africa. Further research should determine how glucose metabolism disorders might be related to immune reconstitution.  相似文献   
59.
Sphingosine 1-phosphate (S1P) is an important bioactive sphingolipid metabolite that has been implicated in numerous physiological and cellular processes. Not only does S1P play a structural role in cells by defining the components of the plasma membrane, but in the last 20 years it has been implicated in various significant cell signaling pathways and physiological processes: for example, cell migration, survival and proliferation, cellular architecture, cell–cell contacts and adhesions, vascular development, atherosclerosis, acute pulmonary injury and respiratory distress, inflammation and immunity, and tumorogenesis and metastasis [ and ]. Given the wide variety of cellular and physiological processes in which S1P is involved, it is immediately obvious why the mechanisms governing S1P synthesis and degradation, and the manner in which these processes are regulated, are necessary to understand. In gaining more knowledge about regulation of the sphingosine kinase (SK)/S1P pathway, many potential therapeutic targets may be revealed. This review explores the roles of the SK/S1P pathway in disease, summarizes available SK enzyme inhibitors and examines their potential as therapeutic agents. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
60.
Obeid R  Scholz C 《Biomacromolecules》2011,12(10):3797-3804
Poly(ethylene glycol) (PEG) and poly(2-methyl-2-oxazoline) (PMOx) are water-soluble, biocompatible polymers with stealth hemolytic activities. Poly(amino acid) (PAA) end-capped PEG and PMOx were prepared using amino-terminated derivatives of PEG and PMOx as macroinitiators for the ring-opening polymerization of γ-benzyl protected l-glutamate N-carboxyanhydride and S-benzyloxycarbonyl protected l-cysteine N-carboxyanhydride, respectively, in the presence of urea, at room temperature. The molecular weight of the PAA moiety was kept between M(n) = 2200 and 3000 g mol(-1). PMOx was polymerized by cationic ring-opening polymerization resulting in molecular weights of M(n) = 5000 and 10,000 g mol(-1), and PEG was a commercial product with M(n) = 5000 g mol(-1). Here, we investigate the self-assembly of the resulting amphiphilic block copolymers in water and the effect of the chemical structure of the block copolymers on the solution properties of self-assembled nanostructures. The PEG-block-poly(amino acid), PEG-b-PAA, and PMOx-block-poly(amino acid), PMOx-b-PAA, block copolymers have a narrow and monomodal molecular weight distribution (PDI < 1.3). Their self-assembly in water was studied by dynamic light scattering and fluorescence spectroscopy. In aqueous solution, the block copolymers associate into particles with hydrodynamic radii (R(H)) ranging in size from R(H) 70 to 130 nm, depending on the block copolymer architecture and the polymer molecular weight. Larger R(H) and critical association concentration values were obtained for copolymers containing poly(S-benzyloxycarbonyl-l-cysteine) compared to their poly(γ-benzyl-L-glutamate) analogue. FTIR investigations revealed that the poly(γ-benzyl-L-glutamate) block adopts a helical conformation, while the poly(S-benzyloxycarbonyl-L-cysteine) block exists as β-sheet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号