首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   12篇
  207篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   4篇
  2015年   18篇
  2014年   21篇
  2013年   12篇
  2012年   26篇
  2011年   18篇
  2010年   12篇
  2009年   10篇
  2008年   4篇
  2007年   8篇
  2006年   14篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
31.
The vast majority of cancer patients die from metastasis, the process by which cancer cells spread to secondary tissues through body fluids. Peritoneal carcinomatosis is a type of metastasis in which cancer cells gain access to the intra-abdominal cavity and then implant in the peritoneum, the thin tissue that lines the abdominal wall and internal organs. Unfortunately, peritoneal carcinomatosis can occur following surgical resection of intra-abdominal malignancies. We previously reported proapoptotic activity of (2E)-3-[[4-(1,1-dimethylethyl)phenyl]sulfonyl]-2-propenenitrile (BAY 11-7085, 1) on colon and pancreatic cancer cells during adhesion and demonstrated that this compound could significantly inhibit peritoneal carcinomatosis in mice.(1,2) In order to determine the chemical basis of the anti-metastatic properties of BAY 11-7085, a series of analogs were synthesized and evaluated for their ability to induce apoptosis in pancreatic and ovarian cancer cells during adhesion to mesothelial cells, which line the surface of the peritoneum. The co-culture assay results were validated using a murine peritoneal carcinomatosis model. These analogs may greatly benefit patients undergoing surgical resections of colorectal, pancreatic, and ovarian cancers depending on their tolerability.  相似文献   
32.
Data concerning pregnancy in women with Cushing's disease treated by gamma-knife (GK) are scanty. We present and discuss the course and outcome of five pregnancies in two women with Cushing's disease (CD), the first of whom was treated only by GK, and the second one treated by surgery, GK and ketoconazole. In the first patient, pregnancy was uneventful and full-term. During gestation, plasma ACTH, serum cortisol and 24-h urinary free cortisol (UFC) levels were steady, and always in the normal range for healthy non-pregnant individuals. The newborn was healthy and normal-weight. In the second woman, two pregnancies, occurring 3 years after GK and few months after ketoconazole withdrawal, were interrupted by spontaneous abortion or placental disruption despite normal cortisol levels. This patient became again pregnant 3 years later and delivered vaginally a healthy full-term infant. Seven months after the delivery, the patient became pregnant again and at the 39th week of gestation delivered vaginally a healthy male. Hypoprolactinemia and/or central hypothyroidism occurred in both cases. In women with CD treated by GK, pregnancy can occur. However, pregnancy is at risk even when ACTH and cortisol levels are normalized by treatment. After GK, evaluation of pituitary function is mandatory due to the risk of hypopituitarism.  相似文献   
33.
Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics. Streptozotocin-induced DM pigs on a saturated fat/cholesterol (SFC) diet (SFC + DM) were compared with control pigs on SFC and standard (control) diets. SFC + DM pigs showed DM-associated metabolic alterations and early atherosclerosis development in the aorta. Endothelium-dependent vasodilation to bradykinin (BK), with or without blockade of nitric oxide (NO) synthase, endothelium-independent vasodilation to an exogenous NO-donor (S-nitroso-N-acetylpenicillamine), and vasoconstriction to endothelin (ET)-1 with blockade of receptor subtypes, were assessed in vitro. Small coronary arteries, but not conduit vessels, showed functional alterations including impaired BK-induced vasodilatation due to loss of NO (P < 0.01 vs. SFC and control) and reduced vasoconstriction to ET-1 (P < 0.01 vs. SFC and control), due to a decreased ET(A) receptor dominance. Other vasomotor responses were unaltered. In conclusion, this model demonstrates specific coronary microvascular alterations with regard to NO and ET-1 systems in the process of early atherosclerosis in DM. In particular, the altered ET-1 system correlated with hyperglycemia in atherogenic conditions, emphasizing the importance of this system in DM-associated CAD development.  相似文献   
34.
Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP’s role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP’s role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis.  相似文献   
35.
The mouse is an excellent model organism to study mammalian brain development due to the abundance of molecular and genetic data. However, the developing mouse brain is not suitable for easy manipulation and imaging in vivo since the mouse embryo is inaccessible and opaque. Organotypic slice cultures of embryonic brains are therefore widely used to study murine brain development in vitro. Ex-vivo manipulation or the use of transgenic mice allows the modification of gene expression so that subpopulations of neuronal or glial cells can be labeled with fluorescent proteins. The behavior of labeled cells can then be observed using time-lapse imaging. Time-lapse imaging has been particularly successful for studying cell behaviors that underlie the development of the cerebral cortex at late embryonic stages (1-2). Embryonic organotypic slice culture systems in brain regions outside of the forebrain are less well established. Therefore, the wealth of time-lapse imaging data describing neuronal cell migration is restricted to the forebrain (3,4). It is still not known, whether the principles discovered for the dorsal brain hold true for ventral brain areas. In the ventral brain, neurons are organized in neuronal clusters rather than layers and they often have to undergo complicated migratory trajectories to reach their final position. The ventral midbrain is not only a good model system for ventral brain development, but also contains neuronal populations such as dopaminergic neurons that are relevant in disease processes. While the function and degeneration of dopaminergic neurons has been investigated in great detail in the adult and ageing brain, little is known about the behavior of these neurons during their differentiation and migration phase (5). We describe here the generation of slice cultures from the embryonic day (E) 12.5 mouse ventral midbrain. These slice cultures are potentially suitable for monitoring dopaminergic neuron development over several days in vitro. We highlight the critical steps in generating brain slices at these early stages of embryonic development and discuss the conditions necessary for maintaining normal development of dopaminergic neurons in vitro. We also present results from time lapse imaging experiments. In these experiments, ventral midbrain precursors (including dopaminergic precursors) and their descendants were labeled in a mosaic manner using a Cre/loxP based inducible fate mapping system (6).  相似文献   
36.
Voltage-gated Na(+) channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na(+) channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na(+) channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na(+) channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na(+) currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na(+) and K(+) channels.  相似文献   
37.

Objective

Obesity is associated with low-grade chronic inflammation. We hypothesized that Roux-en-Y gastric bypass (RYGB) surgery would reduce activation of the NLRP3 inflammasome in metabolically active adipose tissue (AT) of obese rats, and this change would be related to decreases in body weight and improved glycemic control.

Methods

Omental, mesenteric and subcutaneous fat depots were collected from Sprague-Dawley rats: Sham control and RYGB; 90-days after surgery. NLRP3, caspase–1, apoptosis-associated speck-like protein (ASC), IL–1β, IL–18, IL–6 and MCP–1 gene and protein expression were quantified. Glucose metabolism was assessed by oral glucose tolerance test (OGTT).

Results

Compared to Sham surgery controls, RYGB surgery decreased IL–6, MCP–1, NLRP3, IL–18, caspase–1 and ASC in omental fat, and decreased IL–6, MCP1, IL–1β, IL–18, caspase–1 and ASC gene expression in mesenteric fat. We observed differential gene expression between visceral and subcutaneous fat for IL–6 and IL–1β, both being downregulated by RYGB in visceral, and upregulated in subcutaneous depots. These changes in gene expression were accompanied by a decrease in NLRP3, ASC, IL–18, caspase–1 and IL–1β protein expression in omental tissue. We found a positive correlation between caspase–1, ASC, MCP–1, IL–18 and IL–6 gene expression following surgery and glucose AUC response in omental fat, while the change in glucose AUC response correlated with caspase–1 gene expression in subcutaneous fat.

Conclusion

This study demonstrates that bariatric surgery reverses inflammation in visceral adipose tissue by suppressing NLRP3 inflammasome activation. These are the first data to implicate the NLRP3 inflammasome in diabetes remission after RYGB surgery.  相似文献   
38.
39.
The effect of a strong electric field generated by molecular dipoles on the ground state electronic structure and the Q and B states as well as the lowest charge transfer (CT) excited state of porphine–2,5-dimethyl-1,4-benzoquinone (PQ) complex has been investigated theoretically. Density functional theory DFT and time-dependent DFT (TDDFT) with the BH&HLYP hybrid functional have been applied in these calculations. The molecular dipole effect was generated by imposing one or two helical homopeptides consisting of eight α-aminoisobutyric acid residues (Aib8) close to the PQ complex. The molecular dipoles in a close proximity to the PQ complex expose it to an electric field of the order of magnitude of 109 V/m. The presence of the ambient molecular dipoles affects mainly the energy of the lowest CT state and barely the energies of the Q and B states. The molecular dipoles affect the energies of the excited states in a similar way as an external electrostatic field. Hence, the electric field induced by the molecular dipoles of the helical peptides could be used analogously to the external electrostatic field to control electron transfer (ET) in the PQ complex.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号