首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   40篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   14篇
  2014年   11篇
  2013年   9篇
  2012年   13篇
  2011年   20篇
  2010年   8篇
  2009年   12篇
  2008年   15篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1998年   11篇
  1997年   5篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1991年   8篇
  1990年   9篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
91.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   
92.
Mouse BC3H1 myoblasts were stably transfected with the adenovirus 5 E1A gene. One clonal line, BC3E7, was found to differ in some important respects from those previously reported for E1A-transformed myoblasts. In contrast to BC3H1 cells which differentiate when confluent in medium containing 0.5% fetal calf serum (FCS), BC3E7 cells failed to elongate and align, to express acetylcholine receptor and creatine kinase, and to down-regulate expression of beta- and gamma-actins and tropomyosin isoform (TM) 1. However, increased synthesis of TMs 2, 3, and 4, and myosin light chain 1 associated with differentiation in BC3H1 still occurred in BC3E7 cells, and most surprisingly, alpha-actin was produced at a significant level in both proliferating and confluent BC3E7 cells. Interestingly, myogenin was expressed in confluent BC3E7 cells in 0.5% FCS, but not in 20%. The level of E1A expression in BC3E7 cells was found to be very low by analysis of mRNA, by immunoprecipitation of E1A protein, and by the ability of BC3E7 cells to complement the E1A-deficient adenovirus mutant dl312. These results suggest that different levels of E1A may be needed to repress different promoters and that E1A does not block myogenic differentiation by repressing myogenin expression, but represses each muscle gene independently.  相似文献   
93.
SA Botti  CE Felder  S Lifson  JL Sussman    I Silman  I 《Biophysical journal》1999,77(5):2430-2450
We present a model for the molecular traffic of ligands, substrates, and products through the active site of cholinesterases (ChEs). First, we describe a common treatment of the diffusion to a buried active site of cationic and neutral species. We then explain the specificity of ChEs for cationic ligands and substrates by introducing two additional components to this common treatment. The first module is a surface trap for cationic species at the entrance to the active-site gorge that operates through local, short-range electrostatic interactions and is independent of ionic strength. The second module is an ionic-strength-dependent steering mechanism generated by long-range electrostatic interactions arising from the overall distribution of charges in ChEs. Our calculations show that diffusion of charged ligands relative to neutral isosteric analogs is enhanced approximately 10-fold by the surface trap, while electrostatic steering contributes only a 1.5- to 2-fold rate enhancement at physiological salt concentration. We model clearance of cationic products from the active-site gorge as analogous to the escape of a particle from a one-dimensional well in the presence of a linear electrostatic potential. We evaluate the potential inside the gorge and provide evidence that while contributing to the steering of cationic species toward the active site, it does not appreciably retard their clearance. This optimal fine-tuning of global and local electrostatic interactions endows ChEs with maximum catalytic efficiency and specificity for a positively charged substrate, while at the same time not hindering clearance of the positively charged products.  相似文献   
94.
哈尔滨西郊赤狐冬季巢区的初步研究   总被引:5,自引:2,他引:3  
贾竞波  萧前柱 《兽类学报》1990,10(4):268-275
本文利用雪地跟踪方法对哈尔滨西郊5只赤狐在1985-1986年冬季的巢区做了观察。结果表明,5只狐对巢区内各部分使用的强度是不等的,对巢区中部的某些地块使用强度要高于对外围的使用,并具有明显的方向性。5个巢区的平均活动半径为320±68米至557±82米,面积为1.44-4.O9平方公里,线性指数为1.079至2。5只狐相邻距离约1000米。  相似文献   
95.
A CHO mutant MI8-5 was found to synthesize Man9-GlcNAc2-P-P-dolichol rather than Glc3Man9GlcNAc2-P-P-dolichol as the oligosaccharide-lipid intermediate in N-glycosylation of proteins. MI8-5 cells were incubated with labeled mevalonate, and the prenol was found to be dolichol. The mannose-labeled oligosaccharide released from oligosaccharide-lipid of MI8-5 cells was analyzed by HPLC and alpha-mannosidase treatment, and the data were consistent with a structure of Man9GlcNAc2. In addition, MI8-5 cells did not incorporate radioactivity into oligosaccharide- lipid during an incubation with tritiated galactose, again consistent with MI8-5 cells synthesizing an unglucosylated oligosaccharide-lipid. MI8-5 cells had parental levels of glucosylphosphoryldolichol synthase activity. However, in two different assays, MI8-5 cells lacked dolichol- P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase activity. MI8-5 cells were found to synthesize glucosylated oligosaccharide after they were transfected with Saccharomyces cerevisiae ALG 6, the gene for dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase. MI8-5 cells were found to incorporate mannose into protein 2-fold slower than parental cells and to approximately a 2-fold lesser extent.   相似文献   
96.
97.
98.
The regulation of cellular traction forces on the extracellular matrix is critical to cell adhesion, migration, proliferation, and differentiation. Diverse lamellar actin organizations ranging from contractile lamellar networks to stress fibers are observed in adherent cells. Although lamellar organization is thought to reflect the extent of cellular force generation, understanding of the physical behaviors of the lamellar actin cytoskeleton is lacking. To elucidate these properties, we visualized the actomyosin dynamics and organization in U2OS cells over a broad range of forces. At low forces, contractile lamellar networks predominate and force generation is strongly correlated to actomyosin retrograde flow dynamics with nominal change in organization. Lamellar networks build ~60% of cellular tension over rapid time scales. At high forces, reorganization of the lamellar network into stress fibers results in moderate changes in cellular tension over slower time scales. As stress fibers build and tension increases, myosin band spacing decreases and α-actinin bands form. On soft matrices, force generation by lamellar networks is unaffected, whereas tension-dependent stress fiber assembly is abrogated. These data elucidate the dynamic and structural signatures of the actomyosin cytoskeleton at different levels of tension and set a foundation for quantitative models of cell and tissue mechanics.  相似文献   
99.

Background  

Enterococci rank among the leading causes of nosocomial infections. The failure to identify pathogen-specific genes in Enterococcus faecalis has led to a hypothesis where the virulence of different strains may be linked to strain-specific genes, and where the combined endeavor of the different gene-sets result in the ability to cause infection. Population structure studies by multilocus sequence typing have defined distinct clonal complexes (CC) of E. faecalis enriched in hospitalized patients (CC2, CC9, CC28 and CC40).  相似文献   
100.

Introduction

Chronic inflammation is a profound systemic modification of the cellular microenvironment which could affect survival, repair and maintenance of muscle stem cells. The aim of this study was to define the role of chronic inflammation on the regenerative potential of satellite cells in human muscle.

Methods

As a model for chronic inflammation, 11 patients suffering from rheumatoid arthritis (RA) were included together with 16 patients with osteoarthritis (OA) as controls. The mean age of both groups was 64 years, with more females in the RA group compared to the OA group. During elective knee replacement surgery, a muscle biopsy was taken from the distal musculus vastus medialis. Cell populations from four RA and eight OA patients were used for extensive phenotyping because these cell populations showed no spontaneous differentiation and myogenic purity greater than 75% after explantation.

Results

After mononuclear cell explantation, myogenic purity, viability, proliferation index, number of colonies, myogenic colonies, growth speed, maximum number of population doublings and fusion index were not different between RA and OA patients. Furthermore, the expression of proteins involved in replicative and stress-induced premature senescence and apoptosis, including p16, p21, p53, hTERT and cleaved caspase-3, was not different between RA and OA patients. Mean telomere length was shorter in the RA group compared to the OA group.

Conclusions

In the present study we found evidence that chronic inflammation in RA does not affect the in vitro regenerative potential of human satellite cells. Identification of mechanisms influencing muscle regeneration by modulation of its microenvironment may, therefore, be more appropriate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号