首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  63篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   10篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
排序方式: 共有63条查询结果,搜索用时 8 毫秒
21.
The kinetics of growth of all the cells in a population is reflected in the shape of the size distribution of the population. To ascertain whether the kinetics of growth of the average individual cell is similar for different strains or growth conditions, we compared the shape of normalized size distributions obtained from steady-state populations. Significant differences in the size distributions were found, but these could be ascribed either to the precision achieved at division or to a constriction period which is long relative to the total cell cycle time. The remaining difference is quite small. Thus, without establishing the pattern itself, it is concluded that the basic course of growth is very similar for the various Escherichia coli strains examined and probably also for other rod-shaped bacteria. The effects of differences in culture technique (batch or chemostat culture), growth rate, and differences among strains were not found to influence the shape of the size distributions and hence the growth kinetics in a direct manner; small differences were found, but only when the precision at division or the fraction of constricted cells (long constriction period) were different as well.  相似文献   
22.
The stability of several pBR322-derived recombinant plasmids, carrying thethr operon fromEscherichia coli, was investigated in sulfur-limited chemostat cultures ofE. coli GT123. A marked increase in the segregational stability of one of these plasmids was observed. It is concluded that the increased stability was due to the spontaneous insertion of Tn1000 from the chromosome of the host into the plasmid.  相似文献   
23.
The metabolism of gluconate by Klebsiella pneumoniae NCTC 418 was studied in continuous culture. Under all gluconate-excess conditions at low culture pH values (pH 4.5–5.5) the majority (70–90%) of the gluconate metabolized was converted to 2-oxogluconate via gluconate dehydrogenase (GADH), although specific 2-oxogluconate production rates under potassium-limited conditions were significantly lower than under other gluconate-excess conditions. At high culture pH values, metabolism shifted towards production of acetate. Levels of GADH were highest at low culture pH values and synthesis was stimulated by the presence of (high concentrations of) gluconate. An increase in activity of the tricarboxylic acid cycle was accompanied by a decrease in GADH activity in vivo and in vitro, suggesting that the GADH serves a role as an alternative energy-generating system. Anaerobic 2-oxogluconate production was found to be possible in the presence of nitrate as electron acceptor. Levels of gluconate kinase were highest when K. pneumoniae was grown under gluconate-limited conditions. Under carbon-excess conditions, levels of this enzyme correlated with the intracellular catabolic flux.Abbreviations GADH gluconate dehydrogenase (EC 1.1.99.3) - GAK gluconate kinase (EC 2.7.1.12) - GDH glucose dehydrogenase (EC 1.1.99.17) - PQQ pyrroloquinoline quinone [2,7,9-tricarboxy-1-H-pyrrolo (2,3-f) quinoline-4,5-dione] - TCA trichloroacetic acid  相似文献   
24.
NADH/NAD+ ratios and internal pyruvate concentrations were determined during switches between aerobic and anaerobic steady-state conditions of glucose-limited chemostat cultures of Enterococcus faecalis. During the switch experiments, changes in catabolic fluxes were observed: transition from anaerobic to aerobic conditions resulted in a complete and instantaneous conversion of glucose into acetate and CO2 via the pyruvate dehydrogenase complex, while during a switch from aerobic to anaerobic conditions the culture became homolactic. A similar switch to a homolactic fermentation was observed upon release of the limitation by addition of a glucose pulse to the culture. In sharp contrast to this, a pyruvate pulse resulted in an increase of both pyruvate formate-lyase and pyruvate dehydrogenase complex activity. Furthermore, acetoin was formed during a pyruvate pulse, probably due to a dramatic increase in internal pyruvate concentration. Regulation of the catabolic fluxes over the various pyruvate-catabolizing enzymes is discussed in view of the observed changes in internal pyruvate concentrations and NADH/NAD+ ratios.  相似文献   
25.
Klebsiella aerogenes NCTC 418 was grown in chemostat cultures (D=0.17 hr-1; pH 6.8; 35° C) that were, successively, carbon-, sulphate-, ammonia-, and phosphate-limited, and which contained as the sole carbon-substrate first glucose, then glycerol, mannitol and lactate. Quantitative analyses of carbon-substrate used and products formed allowed carbon balances to be constructed and direct comparisons to be made of the effciency of substrate utilization. With all sixteen cultures, carbon recoveries of better than 90% were obtained.Optimum utilization of the carbon substrate was invariably found with the carbon-limited cultures, the sole products being organisms and carbon dioxide. But the extent to which excess substrate was over-utilized varied markedly with both the nature of the growth-limitation and the identity of the carbon-substrate. In general, sulphate-, ammonia-, and phosphate-limited cultures utilized glycerol more efficiently than mannitol, mannitol better than lactate, and glucose least efficiently. Glucose-containing cultures also synthesized some extracellular polysaccharide.When the carbon source was in excess, a range of acidic compounds generally were excreted. Sulphate-limited cultures, growing on glucose, excreted much pyruvate and acetate, whereas similarly-limited cultures growing on glycerol, mannitol or lactate produced only acetate. Ammonialimited cultures invariably excreted 2-oxoglutarate and acetate, whereas phosphate-limited cultures produced gluconic acid, 2-ketogluconic acid and acetate, when growing on glucose, but only acetate when growing on mannitol or lactate.From the rates of substrate and oxygen consumption, and the rates of cell synthesis, yield values for both substrate and oxygen were calculated. These showed different trends, but were similar in being highest under carbon-limitation and substantially lower under all other limitations.The physiological significance of these findings, and the probable nature of the regulatory mechanisms underlying overflow metabolism are discussed.  相似文献   
26.
Klebsiella aerogenes NCIB 418 assimilates glycerol via alternative pathways: one involves a glycerol kinase with a high affinity for glycerol (apparent K m=1–2×10–6 M), and the second a glycerol dehydrogenase with a much lower affinity for its substrate (apparent K m=2–4×10–2 M).In variously-limited chemostat cultures, one or the other pathway predominated. Thus, aerobic carbonlimited organisms contained only the glycerol kinase pathway whereas aerobic sulphate-limited or ammonia-limited organisms (grown on glycerol) used only the glycerol dehydrogenase pathway. Anaerobic cultures invariably contained glycerol dehydrogenase, and glycerol kinase was absent.Washed suspensions of aerobically-grown organisms oxidized glycerol with kinetics similar to that of the particular enzyme (the primary enzyme of the assimilatory pathway) which they possessed, thus indicating a close association between these two enzymes and the uptake process. But a supply of exogenous glycerol was not a prerequisite for the synthesis of either glycerol kinase or glycerol dehydrogenase, and nor was molecular oxygen the key factor in effecting modulation between the alternative pathways of glycerol metabolism, as had been previously suggested.The physiological significance of dual pathways of glycerol assimilation is discussed.  相似文献   
27.
28.
Progressively increasing the input concentration of growth-limiting nutrient (glucose, ammonia, K+) to anaerobic chemostat cultures ofKlebsiella aerogenes (D=0.38 h−1; 35°C; pH 6.8) led to a non-linear increase in bacterial cell concentration. At modest population densities, residual growth-limiting substrate levels increased substantially, with increasing input concentration, and the culture bacterial dry weight tended to a constant value. With the glucose-limited culture, increasing the glucose input concentration above 20 g·1−1 led to accumulation of unused glucose and a change in the fermentation pattern. There was a concomitant lowering of the yield value with respect to glucose consumption, and the calculated YATP value similarly declined. Addition of extra essential (non-limiting) nutrients to the culture was without effect. Similarly, addition of individual fermentation products (acetate, ethanol,d-lactate, 2,3-butanediol, succinate) to the feed medium, in varying concentrations and in different combinations, failed to influence the fermentation pattern or the energetics of cell synthesis. However, a clear correlation was observed between the yield values (of both glucose- and K+-limited cultures) and the steady state concentration of CO2 in the effluent gas. Increasing the concentration CO2 either by increasing the population density or lowering the sparging rate of nitrogen gas through the culture, effected a lowering of the yield values. It is suggested that dissolved CO2 exerts an effect on both metabolism and the energetics of cell synthesis. A possible mechanism of energy dissipation (i.e., a futile cycle) involving carboxylation and decarboxylation reactions is proposed.  相似文献   
29.
30.
Abstract Enterococcus faecalis was grown in chemostat culture on various energy sources at dilution rates ranging from 0.05 h−1 to 0.5 h−1, under both aerobic and anaerobic conditions. NADH/NAD ratios and total nicotinamide adenine dinucleotide pool size (NAD(H)) were determined. It was found that the NADH/NAD ratio was controlled by the steady state product concentrations rather than by the degree of reduction of the energy source. Highest ratios were observed when NADH was reoxidized via ethanol formation, whereas in aerobic cultures, in which predominantly acetate was produced and oxidation of NADH occurred via the NADH oxidase, ratios were lowest. Addition of ethanol to the medium resulted in an increase of the NADH/NAD ratio, both aerobically and anaerobically. The total amount of NAD(H) was found to be influenced by the culture conditions. Under anaerobic conditions, the NADH oxidation (NAD reduction) rate appeared to correlate with the total amount of nicotinamide nucleotides. In contrast, no effect of the culture conditions on the total amount of NAD(H) was observed in aerobically grown cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号