首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   7篇
  2015年   2篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   6篇
  2010年   10篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1959年   2篇
  1958年   4篇
  1957年   3篇
  1956年   6篇
  1955年   3篇
  1953年   2篇
  1952年   4篇
  1951年   3篇
  1950年   3篇
  1948年   2篇
  1928年   2篇
  1918年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
51.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   
52.
Summary

We describe the spawning behaviour and some aspects of spawning periodicity in a diverse group of marine invertebrates, principally echinoderms, but including sponges, anthozoans, molluscs, and polychaetes. Our observations were made both opportunistically and on a systematic basis between 1978 and 1992 on the central and northern Great Barrier Reef. Spawning was predictable in some of the species observed, for example Bohadschia argus, Euapta godeffroyi, and Stichopus variegatus (Holothuroidea), which exhibited regular lunar and diel periodicity. Others, such as Holothuria coluber, Actinopyga lecanora, and Bohadschia graffei (Holothuroidea), Acanthaster planei (Asteroidea), Hyotissa hyotis and Arca spp. (Bivalvia) exhibited no clear lunar or diel periodicity in spawning behaviour. Mass heterospecific spawnings which involved several species, often from different phyla, were commonly observed. The species participating were usually those with unpredictable spawning patterns and while the species involved were diverse there were also occasions when spawning involved species from the same genera. Fertilization rates were measured in situ for the predictable spawner Bohadschia argus and were found to vary between 0–96% depending on the circumstances of the spawnings. Fertilization rates for the unpredictable spawners showed similar variability; Holothuria coluber and Actinopyga lecanora ranged from 9–83%.  相似文献   
53.
ABSTRACT. The glaucocystophyte Cyanophora paradoxa is an obligatorily photoautotrophic biflagellated protist containing cyanelles, peculiar plastids surrounded by a peptidoglycan layer between their inner and outer envelope membranes. Although the 136-kb cyanelle genome surpasses higher plant chloroplast genomes in coding capacity by about 50 protein genes, these primitive plastids still have to import >2,000 polypeptides across their unique organelle wall. One such protein is transketolase, an essential enzyme of the Calvin cycle. We report the sequence of the pre-transketolase cDNA from C. paradoxa and in vitro import experiments of precursor polypeptides into cyanelles and into pea chloroplasts. The transit sequence clearly indicates the localization of the gene product to cyanelles and is more similar to the transit sequences of the plant homologues than to transit sequences of other cyanelle precursor polypeptides with the exception of a cyanelle consensus sequence at the N-terminus. The mature sequence reveals conservation of the thiamine pyrophosphate binding site. A neighbor-net planar graph suggests that Cyanophora , higher plants, and the photosynthetic protist Euglena gracilis acquired their nuclear-encoded transketolase genes via endosymbiotic gene transfer from the cyanobacterial ancestor of plastids; in the case of Euglena probably entailing two transfers, once from the plastid in the green algal lineage and once again in the secondary endosymbiosis underlying the origin of Euglena's plastids. By contrast, transketolase genes in some eukaryotes with secondary plastids of red algal origin, such as Thalassiosira pseudonana , have retained the pre-existing transketolase gene germane to their secondary host.  相似文献   
54.
In water‐stressed soybean primary roots, elongation was maintained at well‐watered rates in the apical 4 mm (region 1), but was progressively inhibited in the 4–8 mm region (region 2), which exhibits maximum elongation in well‐watered roots. These responses are similar to previous results for the maize primary root. To understand these responses in soybean, spatial profiles of soluble protein composition were analysed. Among the changes, the results indicate that region‐specific regulation of phenylpropanoid metabolism may contribute to the distinct growth responses in the different regions. Several enzymes related to isoflavonoid biosynthesis increased in abundance in region 1, correlating with a substantial increase of isoflavonoid content in this region which could contribute to growth maintenance via various potential mechanisms. In contrast, caffeoyl‐CoA O‐methyltransferase, which is involved in lignin synthesis, was highly up‐regulated in region 2. This response was associated with enhanced accumulation of lignin, which may be related to the inhibition of growth in this region. Several proteins that increased in abundance in both regions of water‐stressed roots were related to protection from oxidative damage. In particular, an increase in the abundance of ferritin proteins effectively sequestered more iron and prevented excess free iron in the elongation zone under water stress.  相似文献   
55.
Abstract: Paddock trees are a common feature in the agricultural landscapes of Australia. Recent studies have demonstrated the value of scattered paddock trees for soil fertility, native pasture plants and arboreal faunas; however, the degree to which scattered paddock trees contribute to the conservation of terrestrial invertebrate biodiversity within grazed landscapes remains unknown. We ask three questions: (i) Is there a difference between the terrestrial invertebrate assemblages found under paddock trees compared with surrounding grazed native pastures? (ii) Can gradients in soil and litter variables from the base of trees explain patterns in invertebrate assemblages? and (iii) Does the presence of scattered paddock trees have implications for the conservation of terrestrial invertebrate biodiversity within grazed native pastures? We used pitfall trapping and extraction from soil cores to sample the invertebrate assemblages under six New England Peppermint trees (Eucalyptus nova‐anglica Deane and Maiden) and compared them with assemblages sampled from the open paddock. Formicidae and Collembola univariate and multivariate data were analysed along with a range of soil and litter variables. We found (i) significant differences in the assemblages of invertebrates under trees compared with surrounding grazed pastures; (ii) that most soil and litter variables revealed gradients away from tree bases and these variables explained significant variation in invertebrate assemblages; and (iii) more native invertebrates and more species of invertebrates were found under trees compared with the surrounding pastures. We discuss the relationships between paddock trees, the ground and soil environments and the invertebrate communities that inhabit these environments, and conclude with a discussion of the future for paddock trees and the biota supported by them.  相似文献   
56.
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat   总被引:1,自引:0,他引:1  
Stagonospora nodorum is an important pathogen of wheat and related cereals, causing both a leaf and glume blotch. This review summarizes recent advances in our understanding of taxonomy, control and pathogenicity of this species.
Taxonomy:   Stagonospora (syn. Septoria ) nodorum (Berk.) Castell. and Germano [teleomorph: Phaeosphaeria (syn. Leptosphaeria ) nodorum (Müll.) Hedjar.], kingdom Fungi, phylum Ascomycota, subphylum Euascomycota, class Dothideomycetes, order Pleosporales, family Phaeosphaeriaceae, genus Phaeosphaeria , species nodorum .
Host range:   Wheat, Triticum aestivum , T. durum , Triticale, are the main hosts but other cereals and wild grasses have been reported to harbour S. nodorum. Disease symptoms are lens-shaped necrotic lesions on leaves, girdling necrosis on stems (especially the nodes, hence ' nodorum ') and lesions on glumes. Mature lesions produce pycnidia scattered throughout the lesions, especially as tissue senesces.
Useful websites:   http://ocid.nacse.org/research/deephyphae/htmls/asco_taxlist_spat.html (taxonomic information), http://ohioline.osu.edu/ac-fact/0002.html (disease information), http://wwwacnfp.murdoch.edu.au/  (ACNFP homepage), http://www.broad.mit.edu/annotation/fungi/stagonospora_nodorum/index.html (genome sequence homepage), http://cogeme.ex.ac.uk/efungi/ (genome sequence annotation and analysis).  相似文献   
57.
The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old‐growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow‐growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350 Mg dry weight ha?1) and declining to 200–250 Mg dry weight ha?1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106 km2 in 2000) to be 93±23 Pg C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified.  相似文献   
58.
The sinusoidal decapod crustacean burrow Sinusichnus sinuosus is documented from the Upper Cretaceous Hidden Lake Formation of James Ross Island (Antarctica), the Upper Oligocene-Lower Miocene Naricual Formation of the Eastern Venezuela Basin, and the Middle Miocene Socorro Formation of the Falcón Basin of Western Venezuela, significantly expanding its geographical and palaeolatitudinal range. These burrows may have served for bacterial farming in relatively stressful settings characterized by deltaic progradation. Sinusichnus sinuosus seems to display a broad latitudinal range, from low latitude tropical settings (Venezuela) to intermediate latitude temperate areas (Spain and France), and high latitude cold waters (Antarctica). The appearance of S. sinuosus in the Cretaceous reveals the acquisition of more sophisticated feeding strategies by decapod crustaceans, reflecting the dominance of the Modern Evolutionary Fauna.  相似文献   
59.
60.
The evolution of perissodactyls (rhinoceroses, tapirs, and horses) has been well studied primarily because of their extensive fossil record. Nevertheless, controversy persists regarding relationships of some of the extant taxa, reflecting inconsistencies between molecular and morphological studies. Here we examine the phylogenetic relationships of 16 living perissodactyl species by concatenating two mitochondrial and nine nuclear genes, and we estimate their divergence times using a relaxed Bayesian molecular clock approach. Our analyses recovered the monophyly of the suborders Ceratomorpha and Hippomorpha, and the families Rhinoceratidae, Tapiridae, and Equidae. We supported the early divergence of the Indian rhinoceros in the late Oligocene (26 Mya) relative to the Sumatran and African rhinoceroses, and the split of caballine (domestic horse and Przewalski's wild horse) and noncaballine equids (zebras and African and Asiatic asses) in the Pliocene (4 Mya). An important implication of this study is that Equus asinus, the African wild ass was found to be the sister taxon of Asiatic asses and zebras, diverging from the common ancestor with caballine horses 2 Mya. Rates of chromosome rearrangements were also evaluated in perissodactyls, placing a notably high rate of variation amongst equids, particularly within the zebra clade. The robust phylogenetic results presented here are relevant in terms of understanding the evolutionary history of this highly threatened group of mammals. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1289–1303.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号