首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   14篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   10篇
  2017年   6篇
  2016年   11篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   20篇
  2010年   10篇
  2009年   12篇
  2008年   19篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   16篇
  2003年   13篇
  2002年   8篇
  2001年   18篇
  2000年   10篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   9篇
  1991年   8篇
  1990年   13篇
  1989年   9篇
  1988年   4篇
  1987年   7篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1971年   2篇
  1970年   1篇
  1961年   1篇
排序方式: 共有304条查询结果,搜索用时 296 毫秒
101.
A simple and rapid column procedure is described for the isolation from protein hydrolysates of peptides containing covalently bound substrate analogues with cis-diol groups. The method is based on complex formation between the cis-diol groups of peptide-bound compounds and dihydroxyborylic groups of a dihydroxyborylaminoethyl cellulose column. The method is useful for isolation of peptide(s) located in or near the active centre of enzymes after their affinity labelling by chemically active analogues of natural substrates like ribonucleotides, sugars, etc.Abbreviations used azido-ATP -(n-azidoanilide)-ATP - CME-carbodiimide N-cyclohexyl-N--(4-methylmorpholinium)-ethylcarbodiimide - DBAE-cellulose dihydroxyborylaminoethyl cellulose - DTT dithiotreitol - PheRSase phenylalanyl-tRNA synthetase - TRSase tryptophanyl-tRNA synthetase  相似文献   
102.
A new base-substituted analogue of dCTP, exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]aminoethyl}-2'-deoxycytidine-5'-triphosphate (FAP-dCTP) has been synthesized and characterized. FAP-dCTP is an efficient substrate of mammalian DNA polymerase beta in the reaction of primer elongation displaying substrate properties as an analogue of dCTP and dTTP. FAP-dCTP was used for the photoaffinity modification of mammalian DNA polymerase beta. Two approaches to photoaffinity labeling were utilized. In one approach, photoreactive FAP-dCTP was first incorporated into radiolabeled primer-template, and photoreactive DNA was UV-irradiated in the presence of DNA polymerase beta, which resulted in the polymerase labeling by photoreactive primer. In an alternate approach, FAP-dCTP was first UV-cross-linked to the enzyme; subsequently, radiolabeled primer-template was added, and the enzyme-linked FAP-dCTP was incorporated into the 3'-end of radioactive primer. This "catalytic" modification pathway was shown to be less specific in recognition of FAP-dCTP as an analogue of dCTP than dTTP. FAP-dCTP was used as substrate of endogenous DNA polymerases of HeLa cell extract to synthesize photoreactive DNAs for photoaffinity modification of cell proteins. UV irradiation results in modification of DNA binding proteins of cell extract. The level of photoaffinity labeling of protein targets in the cell extract was strongly dependent on the efficiency of synthesis of photoreactive DNA.  相似文献   
103.
A new photoreactive oligonucleotide derivative was synthesized with a perfluoroarylazido group attached to the 2'-position of the ribose fragment of the 5'-terminal nucleotide. Using this conjugate, photoreactive DNA duplexes were produced which contained single-stranded regions of different length, single-stranded breaks (nicks), and also ds duplex with a photoreactive group inside one of the chains. These structures imitate DNA intermediates generated at different stages of DNA replication and repair. The interaction of replication protein A (RPA) with the resulting DNA structures was studied using photoaffinity modification and gel retardation assay. Independently of the DNA structure, only the large subunit of RPA (p70) was crosslinked to photoreactive DNAs, and the intensity of its labeling increased with decrease in the size of the single-stranded region and was maximal in the case of the nick-containing DNA structure. By gel retardation, the most effective binding of RPA to this structure was shown, whereas the complexing of RPA with DNA containing the unmodified nick and also with the full duplex containing the photoreactive group inside the chain was significantly less effective. The data suggest that RPA should be sensitive to such damages in the double-stranded DNA structure.  相似文献   
104.
Poly(ADP-ribose) polymerase-1 (PARP-1), a eucaryotic nuclear DNA-binding protein that is activated by breaks in DNA chains, may be involved in the base excision repair (BER) because DNAs containing single-stranded gaps and breaks are intermediates of BER. The effect of PARP-1 on the DNA synthesis catalyzed in vitro by DNA polymerase beta (pol beta) was studied using analogs of DNA substrates produced during BER and imitating intermediates of the short patch and long patch subpathways of BER. Oligonucleotide duplexes of 34 bp that contained a mononucleotide gap or a single-strand break with tetrahydrofuran phosphate or phosphate at the 5;-end of the downstream oligonucleotide were taken as DNA substrates. The efficiency of DNA synthesis was determined at various ratios of pol beta and PARP-1. The efficiency of gap filling was decreased in the presence of PARP-1, but strand-displacement DNA synthesis was inhibited significantly stronger, which seemed to be due to competition between PARP-1 and pol beta for DNA. In the presence of NAD+ and single-strand breaks in DNA, PARP-1 catalyzes the synthesis of poly(ADP-ribose) covalently attached to the enzyme, and this automodification is thought to provide for dissociation of PARP-1 from DNA. The effect of PARP-1 automodification on inhibition of DNA synthesis was studied, and efficiency of mononucleotide gap filling was shown to be restored, but strand-displacement synthesis did not revert to the level observed in the absence of PARP-1. PARP-1 is suggested to regulate the interaction between pol beta and DNA, in particular, via its own automodification.  相似文献   
105.
The functional roles of phenylalanine and ATP in productive binding of the tRNA(Phe) acceptor end have been studied by photoaffinity labeling (cross-linking) of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with tRNA(Phe) analogs containing the s(4)U residue in different positions of the 3'-terminal single-stranded sequence. Human and E. coli tRNA(Phe)s used as basic structures differ by efficiency of the binding and aminoacylation with the enzyme under study. Destabilization of the complex with human tRNA(Phe) caused by replacement of three recognition elements decreases selectivity of labeling of the alpha- and beta-subunits responsible for the binding of adjacent nucleotides of the CCA-end. Phenylalanine affects the positioning of the base and ribose moieties of the 76th nucleotide, and the recorded effects do not depend on structural differences between bacterial and eukaryotic tRNA(Phe)s. Both in the absence and presence of phenylalanine, ATP more effectively inhibits the PheRS labeling with the s(4)U76-substituted analog of human tRNA(Phe) (tRNA(Phe)-s(4)U76) than with E. coli tRNA(Phe)-s(4)U76: in the first case the labeling of the alpha-subunits is inhibited more effectively; the labeling of the beta-subunits is inhibited in the first case and increased in the second case. The findings analyzed with respect to available structural data on the enzyme complexes with individual substrates suggest that the binding of phenylalanine induces a local rearrangement in the active site and directly controls positioning of the tRNA(Phe) 3'-terminal nucleotide. The effect of ATP on the acceptor end positioning is caused by global structural changes in the complex, which modulate the conformation of the acceptor arm. The rearrangement of the acceptor end induced by small substrates results in reorientation of the 3'-OH-group of the terminal ribose from the catalytic subunit onto the noncatalytic one, and this may explain the unusual stereospecificity of aminoacylation in this system.  相似文献   
106.
Substrate properties of several dTTP analogues bearing a photoreactive 2-nitro-5-azidobenzoyl (NAB) group attached at position 5 of uracil through linkers of various lengths, dTTP-NAB-x-dUTP (where x = 2, 4, 7-13 is the number of atoms in the linker), were studied. All the analogues are substrates for thermostable Thermus thermophilus B35 DNA polymerase in the elongation reaction of the 5'-32P-labeled primer-template complex. The kinetic parameters of some of the analogues were determined and compared with those of natural dTTP. It was shown that an increase in the linker length results in a higher efficiency of the analogue. The incorporation of NAB-x-dUMP residues into the 3'-primer end did not impede a further elongation of the chain in the presence of natural dNTP.  相似文献   
107.
c-FLIPR, a new regulator of death receptor-induced apoptosis   总被引:12,自引:0,他引:12  
c-FLIPs (c-FLICE inhibitory proteins) play an essential role in regulation of death receptor-induced apoptosis. Multiple splice variants of c-FLIP have been described on the mRNA level; so far only two of them, c-FLIP(L) and c-FLIP(S,) had been found to be expressed at the protein level. In this report, we reveal the endogenous expression of a third isoform of c-FLIP. We demonstrate its presence in a number of T and B cell lines as well as in primary human T cells. We identified this isoform as c-FLIP(R), a death effector domain-only splice variant previously identified on the mRNA level. Impor-/tantly, c-FLIP(R) is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex upon CD95 stimulation. Several properties of c-FLIP(R) are similar to c-FLIP(S): both isoforms have a short half-life, a similar pattern of expression during activation of primary human T cells, and are strongly induced in T cells upon CD3/CD28 costimulation. Taken together, our data demonstrate endogenous expression of c-FLIP(R) and similar roles of c-FLIP(R) and c-FLIP(S) isoforms in death receptor-mediated apoptosis.  相似文献   
108.
We examined interactions between base excision repair (BER) DNA intermediates and purified human BER enzymes, DNA polymerase β (pol β), apurinic/apyrimidinic endonuclease (APE1) and poly(ADP-ribose) polymerase-1 (PARP-1). Studies under steady-state conditions with purified BER enzymes and BER substrates have already demonstrated interplay between these BER enzymes that is sensitive to the respective concentrations of each enzyme. Therefore, in this study, using conditions of enzyme excess over substrate DNA, we further examine the question of interplay between BER enzymes on BER intermediates. The results reveal several important differences compared with data obtained using steady-state assays. Excess PARP-1 antagonizes the action of pol β, producing a complete block of long patch BER strand-displacement DNA synthesis. Surprisingly, an excess of APE1 stimulates strand-displacement DNA synthesis by pol β, but this effect is blocked by PARP-1. The APE1 exonuclease function appears to be modulated by the other BER proteins. Excess APE1 over pol β may allow APE1 to perform both exonuclease function and stimulation of strand-displacement DNA synthesis by pol β. This enables pol β to mediate long patch sub-pathway. These results indicate that differences in the stoichiometry of BER enzymes may regulate BER.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号