首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   45篇
  112篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   6篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1975年   2篇
  1973年   4篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1961年   2篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
15.
The GLI-Kruppel family of human genes.   总被引:20,自引:9,他引:20       下载免费PDF全文
Previous characterization of GLI, a gene found to be amplified and expressed in a subset of human brain tumors, revealed the presence of five tandem zinc fingers related to those of Krüppel (Kr), a Drosophila segmentation gene of the gap class. We have used the GLI cDNA as a molecular probe to isolate related sequences from the human genome. Partial characterization of six related loci, including sequence determination, expression studies, and chromosome localization, revealed that each locus could encode a separate finger protein. The predicted proteins all had similar H-C links, i.e., a conserved stretch of 9 amino acids connecting the C-terminal histidine of one finger to the N-terminal cysteine of the next. On the basis of amino acid sequence and intron-exon organization, the genes could be placed into one of two subgroups: the GLI subgroup (with the consensus finger amino acid sequence [Y/F]XCX3GCX3[F/Y]X5LX2HX3-4H[T/S]GEKP) or the Kr subgroup (with the consensus finger amino acid sequence [Y/F]XCX2CX3FX5LX2HXRXHTGEKP). Unlike GLI or Kr, most of the newly isolated genes were expressed in many adult tissues. The predicted proteins probably control the expression of other genes and, by analogy with Kr and GLI, may be important in human development, tissue-specific differentiation, or neoplasia.  相似文献   
16.
The s(15DttMb), s(36Pub), s(1Acrg) and s(24Pub) piebald deletion alleles belong to a set of overlapping deficiencies on the distal portion of chromosome 14. Molecular analysis was used to define the extent of the deletions. Mice homozygous for the smallest deletion, s(15DttMb), die shortly after delivery and display alterations in the central nervous system, including hydrocephalus and a dorsally restricted malformation of the spinal cord. These mice also display homeotic transformations of vertebrae in the midthoracic and lumbar regions. Homozygous s(27Pub) mice contain a point mutation in the piebald gene, survive to weaning, and display no central nervous system or skeletal defects, arguing that the s(15DttMb) phenotype results from the loss of genes in addition to piebald. A larger deletion, s(36Pub), exhibits additional cartilage malformations and defects in the anterior axial and cranial skeleton. The skeletal defects in both s(15DttMb) and s(36Pub) mice resemble transformations associated with the targeted disruption of Hox genes and genes encoding the retinoic acid receptors, which play a role in the specification of segmental identity along the anteroposterior axis. Complementation analysis of the s(15DttMb) and s(36Pub) phenotypes, using two additional deletions, localized the gene(s) associated with each phenotype to a defined chromosomal region.  相似文献   
17.
Aldose reductase and hexonate dehydrogenase were isolated from human brain and partially purified. The two enzymes exhibited distinctive substrate-specificity profiles with a variety of aldoses,and aliphatic and aromatic aldehydes. Aldose reductase exhibited a high affinity for DL-glyceraldehyde (Km of 62 microM) and a low affinity (Km of 90 mM) for glucose, the physiological substrate of the polyol pathway. Hexonate dehydrogenase exhibited a relatively low affinity for D-glucuronate (Km of 4.6 mM) and a very low affinity for glucose (Km of 390 mM). Both enzymes exhibited a high specificity for NADPH, and both were inhibited competitively by NADP+. Hexonate dehydrogenase was inhibited by iodoacetate, iodoacetamide, N-ethylmaleimide and p-chloromercuribenzoate. Preincubation with 2-mercaptoethanol resulted in activation. Both enzymes were inhibited by a number of barbiturates (barbital, phenobarbital and pentobarbital) and by the central-nervous-system drugs diphenylhydantoin and ethosuccinimide. The substrate specificity and pattern of inhibition suggest that the two enzymes isolated correspond to two of four previously reported aldehyde reductases isolated from human brain.  相似文献   
18.
Sodium metaperiodate is mitogenic for human peripheral lymphocytes. Evidence of stimulation can be detected as increased thymidine incorporation at 72 h after only 10 sec of exposure to the IO4. The degree of response varies with lymphocytes from different donors, but maximum stimulation for the healthy donors studied was obtained at concentrations of IO4 between 10−3 M and 4 × 10−3 M. Concentrations of 8 × 10−3 M and above are non-stimulatory and toxic. Exposures to optimum concentrations for 1 h or longer result in essentially no stimulation and inincreased cell death. However, a significant response to phytohemagglutinin (PHA) and pokeweed mitogen (PWM) remains. The kinetics of response over a 4 day culture period are similar for IO4, PHA and PWM. The morphology of the blast cells and the degree of response suggest that the IO4 responsive lymphocyte population may be more closely related to the PWM stimulated cells than the PHA responsive lymphocytes.  相似文献   
19.
Abstract: Human brain aldose reductase and hexonate dehydrogenase are inhibited by alrestatin (AY 22,284) and sorbinil (CP 45,634). Inhibition by alrestatin is noncompetitive for both enzymes, and slightly stronger for hexonate dehydrogenase ( K I values 52-250 μ M ) than for aldose reductase ( K I values 170-320 μ M ). Sorbinil inhibits hexonate dehydrogenase far more potently than aldose reductase, K I values being 5 μ M for hexonate dehydrogenase and 150 μ M for aldose reductase. The inhibition of hexonate dehydrogenase by sorbinil is noncompetitive with respect to both aldehyde and NADPH substrates, and is thus kinetically similar to the inhibition by alrestatin. However, sorbinil inhibition of aldose reductase is uncompetitive with respect to glyceraldehyde and noncompetitive with NADPH as the varied substrate. Inhibition of human brain aldose reductase by these two inhibitors is much less potent than that reported for the enzyme from other sources.  相似文献   
20.
The skeletal muscles of chickens, frogs, and fish have been reported to express two isoforms (alpha and beta) of the sarcoplasmic reticulum calcium release channel (ryanodine receptor or RYR), while mammals express only one. We have studied patterns of RYR isoform expression in skeletal muscles from a variety of fish, reptiles, and birds with immunological techniques. Immunoblot analysis with a monoclonal antibody that recognizes both nonmammalian RYR isoforms and a polyclonal antibody specific to the alpha isoform show two key results: (a) two reptilian orders share with mammals the pattern of expressing only the alpha (skeletal) RYR isoform in skeletal muscle; and (b) certain functionally specialized muscles of fish and birds express only the alpha RYR isoforms. While both isoforms are expressed in the body musculature of fish and birds, the alpha isoform is expressed alone in extraocular muscles and swimbladder muscles. The appearance of the alpha RYR isoform alone in the extraocular muscles and a fast-contracting sonic muscle in fish (toadfish swimbladder muscle) provides evidence that this isoform is selectively expressed when rapid contraction is required. The functional and phylogenetic implications of expression of the alpha isoform alone are discussed in the context of the mechanism and evolution of excitation-contraction coupling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号