首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   10篇
  97篇
  2022年   2篇
  2021年   5篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   10篇
  2011年   11篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  1996年   1篇
  1983年   1篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
51.
The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems.  相似文献   
52.
Rapid advancements in sequencing technologies along with falling costs present widespread opportunities for microbiome studies across a vast and diverse array of environments. These impressive technological developments have been accompanied by a considerable growth in the number of methodological variables, including sampling, storage, DNA extraction, primer pairs, sequencing technology, chemistry version, read length, insert size, and analysis pipelines, amongst others. This increase in variability threatens to compromise both the reproducibility and the comparability of studies conducted. Here we perform the first reported study comparing both amplicon and shotgun sequencing for the three leading next-generation sequencing technologies. These were applied to six human stool samples using Illumina HiSeq, MiSeq and Ion PGM shotgun sequencing, as well as amplicon sequencing across two variable 16S rRNA gene regions. Notably, we found that the factor responsible for the greatest variance in microbiota composition was the chosen methodology rather than the natural inter-individual variance, which is commonly one of the most significant drivers in microbiome studies. Amplicon sequencing suffered from this to a large extent, and this issue was particularly apparent when the 16S rRNA V1-V2 region amplicons were sequenced with MiSeq. Somewhat surprisingly, the choice of taxonomic binning software for shotgun sequences proved to be of crucial importance with even greater discriminatory power than sequencing technology and choice of amplicon. Optimal N50 assembly values for the HiSeq was obtained for 10 million reads per sample, whereas the applied MiSeq and PGM sequencing depths proved less sufficient for shotgun sequencing of stool samples. The latter technologies, on the other hand, provide a better basis for functional gene categorisation, possibly due to their longer read lengths. Hence, in addition to highlighting methodological biases, this study demonstrates the risks associated with comparing data generated using different strategies. We also recommend that laboratories with particular interests in certain microbes should optimise their protocols to accurately detect these taxa using different techniques.  相似文献   
53.
54.
Colorectal cancer is one of the commonest types of cancer and there is requirement for the identification of prognostic biomarkers. In this study protein expression profiles have been established for colorectal cancer and normal colonic mucosa by proteomics using a combination of two dimensional gel electrophoresis with fresh frozen sections of paired Dukes B colorectal cancer and normal colorectal mucosa (n = 28), gel image analysis and high performance liquid chromatography–tandem mass spectrometry. Hierarchical cluster analysis and principal components analysis showed that the protein expression profiles of colorectal cancer and normal colonic mucosa clustered into distinct patterns of protein expression. Forty-five proteins were identified as showing at least 1.5 times increased expression in colorectal cancer and the identity of these proteins was confirmed by liquid chromatography–tandem mass spectrometry. Fifteen proteins that showed increased expression were validated by immunohistochemistry using a well characterised colorectal cancer tissue microarray containing 515 primary colorectal cancer, 224 lymph node metastasis and 50 normal colonic mucosal samples. The proteins that showed the greatest degree of overexpression in primary colorectal cancer compared with normal colonic mucosa were heat shock protein 60 (p<0.001), S100A9 (p<0.001) and translationally controlled tumour protein (p<0.001). Analysis of proteins individually identified 14-3-3β as a prognostic biomarker (χ2 = 6.218, p = 0.013, HR = 0.639, 95%CI 0.448–0.913). Hierarchical cluster analysis identified distinct phenotypes associated with survival and a two-protein signature consisting of 14-3-3β and aldehyde dehydrogenase 1 was identified as showing prognostic significance (χ2 = 7.306, p = 0.007, HR = 0.504, 95%CI 0.303–0.838) and that remained independently prognostic (p = 0.01, HR = 0.416, 95%CI 0.208–0.829) in a multivariate model.  相似文献   
55.
Cryptic species are morphologically identical but genetically distinct, and are prominent across numerous phyla. The coexistence of such closely related species on local scales would seem to run counter to traditional coexistence and competition theory; it has been hypothesized as a consequence of differences in their resource use or tolerances to environmental conditions. We developed an individual-based model of a community of three cryptic Litoditis marina (nematode) species, to understand how individual-level interspecific and intraspecific interactions might explain the coexistence of these closely related species. The model incorporates individuals' reproduction, competition, dispersal and resource use. Data characterizing the cryptic species (growth rates, dispersal ability, competitive interactions and responses to changing environmental conditions) were obtained from laboratory experiments involving both mono- and multispecific nematode cultures, and are used to parameterize the model. Simulation studies are used to investigate which individual-level mechanisms of dispersal and interaction lead to the characteristic population-level patterns observed experimentally. Our results highlight the key role of intraspecific competition in mediating dispersal and therefore co-occurrence of the cryptic species. The differences in dispersal also influence the response of the cryptic species to competition, a combination of factors that provides an explanation for their co-occurrence. These results provide insights into how changes in individual-level processes can be amplified to affect population-level co-occurrence.  相似文献   
56.
The widespread use of herbicides and antibiotics for selection of transgenic plants has not been very successful with regard to commercialization and public acceptance. Hence, alternative selection systems are required. In this study, we describe the use of ipt, the bacterial gene encoding the enzyme isopentenyl transferase from Agrobacterium tumefaciens, as a positive selectable marker for plastid transformation. A comparison between the traditional spectinomycin‐based aadA selection system and the ipt selection system demonstrated that selection of transplastomic plants on medium lacking cytokinin was as effective as selection on medium containing spectinomycin. Proof of principle was demonstrated by transformation of the kasIII gene encoding 3‐ketoacyl acyl carrier protein synthase III into tobacco plastids. Transplastomic tobacco plants were readily obtained using the ipt selection system, and were phenotypically normal despite over‐expression of isopentenyl transferase. Over‐expression of KASIII resulted in a significant increase in 16:0 fatty acid levels, and a significant decrease in the levels of 18:0 and 18:1 fatty acids. Our study demonstrates use of a novel positive plastid transformation system that may be used for selection of transplastomic plants without affecting the expression of transgenes within the integrated vector cassette or the resulting activity of the encoded protein. This system has the potential to be applied to monocots, which are typically not amenable to traditional antibiotic‐based selection systems, and may be used in combination with a negative selectable marker as part of a two‐step selection system to obtain homoplasmic plant lines.  相似文献   
57.
IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.  相似文献   
58.
Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) was isolated from a patient suffering from trichodysplasia spinulosa, a skin disease that can appear in severely immunocompromised patients. While TSPyV is one of the five members of the polyomavirus family that are directly linked to a human disease, details about molecular recognition events, the viral entry pathway, and intracellular trafficking events during TSPyV infection remain unknown. Here we have used a structure-function approach to shed light on the first steps of TSPyV infection. We established by cell binding and pseudovirus infection studies that TSPyV interacts with sialic acids during attachment and/or entry. Subsequently, we solved high-resolution X-ray structures of the major capsid protein VP1 of TSPyV in complex with three different glycans, the branched GM1 glycan, and the linear trisaccharides α2,3- and α2,6-sialyllactose. The terminal sialic acid of all three glycans is engaged in a unique binding site on TSPyV VP1, which is positioned about 18 Å from established sialic acid binding sites of other polyomaviruses. Structure-based mutagenesis of sialic acid-binding residues leads to reduction in cell attachment and pseudovirus infection, demonstrating the physiological relevance of the TSPyV VP1-glycan interaction. Furthermore, treatments of cells with inhibitors of N-, O-linked glycosylation, and glycosphingolipid synthesis suggest that glycolipids play an important role during TSPyV infection. Our findings elucidate the first molecular recognition events of cellular infection with TSPyV and demonstrate that receptor recognition by polyomaviruses is highly variable not only in interactions with sialic acid itself, but also in the location of the binding site.  相似文献   
59.
A fatty acyl coenzyme A synthetase (FadD) from Pseudomonas putida CA-3 is capable of activating a wide range of phenylalkanoic and alkanoic acids. It exhibits the highest rates of reaction and catalytic efficiency with long-chain aromatic and aliphatic substrates. FadD exhibits higher kcat and Km values for aromatic substrates than for the aliphatic equivalents (e.g., 15-phenylpentadecanoic acid versus pentadecanoic acid). FadD is inhibited noncompetitively by both acrylic acid and 2-bromooctanoic acid. The deletion of the fadD gene from P. putida CA-3 resulted in no detectable growth or polyhydroxyalkanoate (PHA) accumulation with 10-phenyldecanoic acid, decanoic acid, and longer-chain substrates. The results suggest that FadD is solely responsible for the activation of long-chain phenylalkanoic and alkanoic acids. While the CA-3ΔfadD mutant could grow on medium-chain substrates, a decrease in growth yield and PHA accumulation was observed. The PHA accumulated by CA-3ΔfadD contained a greater proportion of short-chain monomers than did wild-type PHA. Growth of CA-3ΔfadD was unaffected, but PHA accumulation decreased modestly with shorter-chain substrates. The complemented mutant regained 70% to 90% of the growth and PHA-accumulating ability of the wild-type strain depending on the substrate. The expression of an extra copy of fadD in P. putida CA-3 resulted in increased levels of PHA accumulation (up to 1.6-fold) and an increase in the incorporation of longer-monomer units into the PHA polymer.Fatty acyl coenzyme A (CoA) synthetases (FACS; fatty acid:CoA ligases; EC 6.2.1.3) are ATP-, CoA-, and Mg2+-dependent enzymes that activate alkanoic acids to CoA esters for β oxidation (Fig. (Fig.11 ) (2, 17). FACS are widely distributed in both prokaryotic and eukaryotic organisms and exhibit a broad substrate specificity (34). FadD is a cytoplasmic membrane-associated FACS (7), with sizes ranging from 47 kDa to 62 kDa (2, 14). There is a lack of biochemical information on FadD with a preference for long-chain aromatic and aliphatic substrates. In the current study we purify and characterize for the first time a true long-chain FadD with activity toward both phenylalkanoic and alkanoic acids.Open in a separate windowFIG. 1.FadD activation of fatty acids to their CoA derivatives proceeds through ATP-dependent covalent binding of AMP to fatty acid with the release of inorganic pyrophosphate, followed by C-S bond formation to obtain fatty acyl-CoA ester and subsequent release of AMP. FadD requires the presence of Mg2+ ions to be active (2, 17).It is known that bacteria such as Pseudomonas putida can accumulate the biological polyester polyhydroxyalkanoate (PHA) from aromatic as well as aliphatic alkanoic acids (5, 6, 42, 45). The presence of aromatic monomers in the PHA polymer suggests that a FadD with activity toward aromatic substrates is present in these PHA-accumulating strains. Garcia et al. knocked out an acyl-CoA synthetase in P. putida U with a high homology to long-chain fadD products from Escherichia coli and Pseudomonas fragi (6). Garcia et al. also showed that the mutant was not capable of growth or PHA accumulation with aromatic and aliphatic substrates having between 5 and 10 carbons in their acyl chain, indicating that it is a general and not a long-chain acyl-CoA ligase (6). In a follow-up study, Olivera et al. showed that the fadD mutants reverted to wild-type characteristics within 3 days of incubation, indicating that fadD could be replaced by the activity of a second enzyme (25). Indeed, two fadD gene homologues have been identified in P. putida U, namely, fadD1 and fadD2, with fadD2 being expressed only when fadD1 is inactivated (25). A putative FadD in P. putida KT2440 is encoded by PP_4549 (24), but the protein has not been studied nor has the effect of fadD (PP_4549) expression/disruption been examined. In the current study the knockout and complementation of fadD from P. putida CA-3 demonstrated that its activity is critical for growth and PHA accumulation with long-chain aromatic and aliphatic alkanoic acids and that the activity is not replaced by a second enzyme. While reports have shown that PHA polymerase greatly affects PHA monomer composition (30, 40), no evidence of the specific effect of FACS on PHA accumulation so far exists.We describe here the purification, kinetic characterization, gene deletion, and homologous expression of FadD from P. putida CA-3. This is a fundamental study of the activity and physiological role of FACS activity in aromatic and aliphatic alkanoic acid activation and PHA accumulation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号