首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   17篇
  320篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   15篇
  2013年   23篇
  2012年   13篇
  2011年   14篇
  2010年   24篇
  2009年   24篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   11篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1989年   2篇
  1988年   7篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
171.

Background

Structural equation models (SEM) are used to model multiple traits and the casual links among them. The number of different causal structures that can be used to fit a SEM is typically very large, even when only a few traits are studied. In recent applications of SEM in quantitative genetics mixed model settings, causal structures were pre-selected based on prior beliefs alone. Alternatively, there are algorithms that search for structures that are compatible with the joint distribution of the data. However, such a search cannot be performed directly on the joint distribution of the phenotypes since causal relationships are possibly masked by genetic covariances. In this context, the application of the Inductive Causation (IC) algorithm to the joint distribution of phenotypes conditional to unobservable genetic effects has been proposed.

Methods

Here, we applied this approach to five traits in European quail: birth weight (BW), weight at 35 days of age (W35), age at first egg (AFE), average egg weight from 77 to 110 days of age (AEW), and number of eggs laid in the same period (NE). We have focused the discussion on the challenges and difficulties resulting from applying this method to field data. Statistical decisions regarding partial correlations were based on different Highest Posterior Density (HPD) interval contents and models based on the selected causal structures were compared using the Deviance Information Criterion (DIC). In addition, we used temporal information to perform additional edge orienting, overriding the algorithm output when necessary.

Results

As a result, the final causal structure consisted of two separated substructures: BW→AEW and W35→AFE→NE, where an arrow represents a direct effect. Comparison between a SEM with the selected structure and a Multiple Trait Animal Model using DIC indicated that the SEM is more plausible.

Conclusions

Coupling prior knowledge with the output provided by the IC algorithm allowed further learning regarding phenotypic causal structures when compared to standard mixed effects SEM applications.  相似文献   
172.
Abstract The development and physiology of cord-forming saprotrophic basidiomycetes, which form extensive and persistent mycelial networks in woodland ecosystems, can be conveniently studied on non-sterile soil in laboratory microcosms mimicking field conditions. Morphological responses of Phanerochaete velutina mycelial systems to resource encounters, and decay partitioning following encounters, varied according to whether simulated woody litter was unsterile or autoclaved and on whether encounter took place at the mycelial foraging front or behind the margin (simulating litter fall onto established systems in the field). Results show that encounter of discrete resources by P. velutina is rapidly communicated to the entire mycelial system; that resource capture takes high priority at the expense of continued system extension and decay-derived carbon reallocation; and that polarized growth toward newly encountered resources, previously considered to occur infrequently with this species, may be readily detected using image analysis techniques. Potential advantages of polarized development of P. velutina are discussed.  相似文献   
173.
174.
175.

Background

Engineering of Saccharomyces cerevisiae for the simultaneous utilization of hexose and pentose sugars is vital for cost-efficient cellulosic bioethanol production. This yeast lacks specific pentose transporters and depends on endogenous hexose transporters for low affinity pentose uptake. Consequently, engineered xylose-fermenting yeast strains first utilize D-glucose before D-xylose can be transported and metabolized.

Results

We have used an evolutionary engineering approach that depends on a quadruple hexokinase deletion xylose-fermenting S. cerevisiae strain to select for growth on D-xylose in the presence of high D-glucose concentrations. This resulted in D-glucose-tolerant growth of the yeast of D-xylose. This could be attributed to mutations at N367 in the endogenous chimeric Hxt36 transporter, causing a defect in D-glucose transport while still allowing specific uptake of D-xylose. The Hxt36-N367A variant transports D-xylose with a high rate and improved affinity, enabling the efficient co-consumption of D-glucose and D-xylose.

Conclusions

Engineering of yeast endogenous hexose transporters provides an effective strategy to construct glucose-insensitive xylose transporters that are well integrated in the carbon metabolism regulatory network, and that can be used for efficient lignocellulosic bioethanol production.
  相似文献   
176.
Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal’s website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.  相似文献   
177.
Over the past few decades the concept of (human) dignity has deeply pervaded medical ethics. Appeals to dignity, however, are often unclear. As a result some prefer to eliminate the concept from medical ethics, whereas others try to render it useful in this context. We think that appeals to dignity in medical ethics can be clarified by considering the concept from an historical perspective. Firstly, on the basis of historical texts we propose a framework for defining the concept in medical debates. The framework shows that dignity can occur in a relational, an unconditional, a subjective and a Kantian form. Interestingly, all forms relate to one concept since they have four features in common: dignity refers, in a restricted sense, to the 'special status of human beings'; it is based on essential human characteristics; the subject of dignity should live up to it; and it is a vulnerable concept, it can be lost or violated. We argue that being explicit about the meaning of dignity will prevent dignity from becoming a conversation-stopper in moral debate. Secondly, an historical perspective on dignity shows that it is not yet time to dispose of dignity in medical ethics. At least Kantian and relational dignity can be made useful in medical ethics.  相似文献   
178.
179.
Using time-lapse photography, we studied the response kinetics of low light intensity-induced upward leaf-movement, called hyponastic growth, in Arabidopsis thaliana. This response is one of the traits of shade avoidance and directs plant organs to more favorable light conditions. Based on mutant- and pharmacological data we demonstrated that among other factors, functional auxin perception and polar auxin transport (PAT) are required for the amplitude of hyponastic growth and for maintenance of the high leaf angle, upon low light treatment. Here, we present additional data suggesting that auxin and PAT antagonize the hyponastic growth response induced by ethylene treatment. We conclude that ethylene- and low light-induced hyponastic growth occurs at least partly via separate signaling routes, despite their strong similarities in response kinetics.Key words: hyponastic growth, petiole, Arabidopsis, ethylene, low light, auxin, polar auxin transport, differential growthUpward leaf movement (hyponastic growth) is a trait of several plant species to escape from growth-limiting conditions.1,2 Interestingly, Arabidopsis thaliana induces a marked hyponastic growth response triggered by various environmental stimuli, including complete submergence, high temperature, canopy shade and spectral neutral low light intensities (Fig. 1).36 The paper of Millenaar et al. in the New Phytologist 2009,7 provides a detailed analysis of low light intensity-induced hyponastic growth and components of the signal transduction are characterized using time-lapse photography. Low light intensity-induced hyponastic growth is a component of the so-called shade avoidance syndrome. Light-spectrum manipulations and mutant analyses indicated that predominantly the blue light wavelength region affects petiole movement and fast induction of hyponastic growth to low light conditions involves the photoreceptor proteins Cryptochrome 1 (Cry1), Cry2, Phytochrome-A (PhyA) and PhyB. Moreover, we show that also photosynthesis-derived signals can induce differential growth.Open in a separate windowFigure 1Typical hyponastic growth phenotype of Arabidopsis thaliana. Side view of Columbia-0 plants treated 10 h with ethylene (5 µl l−1) or low light (20 µmol m−2 s−1). Plants in control light conditions were in 200 µmol m−2 s−1. Both stimuli induce a clear leaf inclination (hyponasty) relative to the horizontal by differential growth of the petioles. Plants kept in control conditions only show modest diurnal leaf movement and leaf angles gradually decline over time due to maturation of the leaves. Note that the paint droplets were applied to facilitate quantitative measurement of leaf angle kinetics in a time-lapse camera setup.7The hyponastic growth response to low light intensity was not affected in several ethylene-insensitive mutant lines. Moreover, low light did not affect expression of ethylene inducible marker genes nor differences in ethylene release were noted. Therefore, we concluded that low light-induced hyponastic growth is independent of ethylene signaling. This is perhaps surprising, because ethylene is the main trigger of hyponastic growth induced by complete submergence in several species. Interestingly, both ethylene and low light can induce hyponastic growth in Arabidopsis with similar kinetics.3We showed that plants mutant in auxin perception components (transport inhibitor response1 (tir1) and tir1 afb1 afb2 afb3 quadruple, containing additional mutant alleles of TIR1 homologous F-box proteins) and plants mutant in (polar) auxin transport (tir3-1, pin-formed3 (pin3) and pin7) components had a lower hyponastic growth amplitude in low light conditions.7 Moreover, these mutants were less able to maintain the high leaf angles after the response maximum. Both characteristics were also noted in plants pre-treated with the polar auxin transport (PAT) inhibitor 2,3,5-triiodobenzoic acid (TIBA). We therefore concluded that auxin perception and PAT are involved in the regulation of low light-induced hyponastic growth.7 Interestingly, we observed that TIBA pretreatment did not inhibit ethylene-induced hyponastic growth. In fact, the response upon ethylene treatment was even modestly enhanced. In agreement with this observation, we show here that the above mentioned auxin perception and PAT mutants also showed a slightly enhanced hyponastic growth response upon ethylene treatment (Fig. 2).Open in a separate windowFigure 2Auxin involvement in ethylene induced hyponasty. Effect of exposure to ethylene (5 µl l−1) on the kinetics of hyponastic petiole growth (A) in Arabidopsis thaliana Columbia-0 plants treated with 50 µm TIBa (open circles) or a mock treatment (line) adapted from Supporting Information Figure S3 of Millenaar et al. (2009)7 and (B–F) in Arabidopsis auxin signaling and polar auxin transport mutants (closed circles), compared to the wild type response to low light (lines). Petiole angles are pair wise subtracted, which corrects for diurnal petiole movement in control conditions. For details on this procedure, growth conditions, treatments, data acquirement and analysis see.7,13 Error bars represent standard errors; n ≥ 12. mutants were obtained from the Nottingham Arabidopsis Stock Center (accession numbers are shown between brackets) or from the authors describing the lines. tir1-1 (n3798,14), tir1-1 afb1-1 afb2-1 (in a mixed Columbia/Wassilewskija background),15 tir3-1,14 pin3-4 (n9363,16) and pin7-1 (n9365,10).Despite that auxin and PAT are required for many differential growth responses such as phototropism and gravitropism,8,11 these data indicate that auxin perception and PAT are not obligatory for ethylene-induced hyponasty in Arabidopsis per se. In fact, one might even conclude that auxin and PAT antagonizes ethylene-induced hyponasty. These results are partly in agreement with observations on the wetland species Rumex palustris, were pretreatment with the auxin-efflux carrier 1-naphthylphthalamic acid (NPA) resulted in doubling of the lag-phase for hyponastic growth under water, but hardly affected the amplitude of the response.12Together, this indicates that auxin is not always a prerequisite for differential growth responses. Based on the apparent contrasting effects of auxin perception and PAT in low light- and ethylene-induced hyponastic growth, we conclude that ethylene and low light induce hyponastic growth, at least partly, via separate signaling routes.  相似文献   
180.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder that belongs to a group of conditions called laminopathies which affect nuclear lamins. Mutations in two genes, LMNA and ZMPSTE24, have been found in patients with HGPS. The p.G608G LMNA mutation is the most commonly reported mutation. The aim of this work was to compile a comprehensive literature review of the clinical features and genetic mutations and mechanisms of this syndrome as a contribution to health care workers. This review shows the necessity of a more detailed clinical identification of Hutchinson-Gilford progeria syndrome and the need for more studies on the pharmacologic and pharmacogenomic approach to this syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号