首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   17篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   15篇
  2013年   23篇
  2012年   13篇
  2011年   14篇
  2010年   24篇
  2009年   24篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   11篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1989年   2篇
  1988年   7篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有320条查询结果,搜索用时 234 毫秒
151.
A report on the 11th European Conference on Computational Biology (ECCB), Basel, Switzerland, September 9-12, 2012.  相似文献   
152.
Carbonic anhydrase (CA) IX is a hypoxia marker located almost exclusively in tumor cells. We analyzed the expression of this marker in dysplastic lesions adjacent to the surgical resection margin in patients with oral squamous cell carcinoma. We investigated 70 archived tumors, 36 of which showed dysplasia adjacent to the surgical margin. We used tissue microarray technology to perform an immunohistochemical study of CA IX expression. We found 12 (33.3%) cases of mild dysplasia (10 negative, 2 positive for CA IX), five (13.9%) cases of moderate dysplasia (3 negative, 2 positive for CA IX), 1 (2.8%) case of severe dysplasia (negative for CA IX) and 18 (50%) cases of carcinoma in situ (10 negative, 8 positive for CA IX). In cases of intense expression of CA IX in the tumor, the same distribution of positive and negative cases was observed in all degrees of dysplasia (mild, moderate, severe), although cases of carcinoma in situ tended to be CA IX positive.  相似文献   
153.
154.
In this paper we attempted to investigate the existence of daily fluctuations on plasma sexual steroids (17beta-estradiol, E(2) and testosterone, T) in Senegal sole (Solea senegalensis) females. We described the monthly day/night concentrations and seasonal daily rhythms in animals reared under natural photo- and thermo-period. In addition, the influence of the natural annual fluctuation of the water temperature on the plasma concentration of these steroids was investigated, using one group of Senegal sole under a natural photoperiod, but with an attenuated thermal cycle (around 17-20 degrees C) for one year. Although no significant day/night differences were detected in monthly samplings, the existence of an annual rhythm of E(2) and T (p<0.01) with an acrophase in February was revealed by COSINOR analysis. Maximum values were reached in March for both steroids (6.1+/-1.7 ng mL(-1) at mid-dark, MD and 4.0+/-0.6 ng mL(-1) at mid-light, ML for E2 and 1.4+/-0.4 ng mL(-1) at MD and 0.8+/-0.1 ng mL(-1) at ML for T) in anticipation of the spawning season (May-June). As regards seasonal daily rhythms, the presence of daily oscillations was revealed. At the spring solstice (21st March) a daily rhythm was observed for both steroids (COSINOR, p<0.01), with an acrophase at 20:00 h (E(2)) and at 21:08 h (T). In summer, autumn and winter no daily rhythms were observed due to the low steroid levels at those seasons. When Senegal sole females were submitted to an attenuated annual thermal cycle, the steroid rhythm disappeared (there was no surge in spring, as in the control group) and these fish did not spawn, despite being subjected to natural photoperiod conditions. This result underlined the importance of the natural annual fluctuation of water temperature and photoperiod on the synchronization of the spawning season and on the onset of steroidogenesis.  相似文献   
155.
156.

Introduction  

Stressful events are thought to contribute to the aetiology, maintenance and exacerbation of rheumatic diseases. Given the growing interest in acute stress responses and disease, this review investigates the impact of real-life experimental psychosocial, cognitive, exercise and sensory stressors on autonomic, neuroendocrine and immune function in patients with inflammatory rheumatic diseases.  相似文献   
157.
This work demonstrates a contribution of ethylene and NO (nitric oxide) in MP (mastoparan)‐induced cell death in the green algae Chlamydomonas reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of PCD (programmed cell death). A pharmacological approach involving combined treatments with MP and ethylene‐ and NO‐interacting compounds indicated the requirement of trace amounts of both ethylene and NO in MP‐induced cell death. By employing a carbon dioxide laser‐based photoacoustic detector to measure ethylene and a QCL (quantum cascade laser)‐based spectrometer for NO detection, simultaneous increases in the production of both ethylene and NO were observed following MP application. Our results show a tight regulation of the levels of both signalling molecules in which ethylene stimulates NO production and NO stimulates ethylene production. This suggests that, in conjunction with the elicitor, NO and ethylene cooperate and act synchronously in the mediation of MP‐induced PCD in C. reinhardtii. To the best of our knowledge, this is the first report on the functional significance of ethylene and NO in MP‐induced cell death.  相似文献   
158.
Many intracellular macromolecular complexes that are involved in the production or degradation of RNAs are targeted by autoantibodies in systemic autoimmune diseases. RNA interference (RNAi) is a recently characterized gene silencing pathway by which specific mRNAs are either degraded or translationally suppressed. In a recent issue of Arthritis Research and Therapy, Andrew Jakymiw and colleagues reported that the enigmatic Su autoantigen complex contains key components of the RNAi machinery. Anti-Su autoantibodies from both human patients with rheumatic diseases and a mouse model of autoimmunity recognize the endonucleolytic Argonaute and Dicer proteins, both crucial enzymes of the RNAi pathway. These data raise the question of how the anti-Su response is triggered. So far, it is unknown whether molecular modifications may be involved, as has been proposed for other intracellular autoantigens. The implication of RNAi in anti-viral defence may suggest a role for virus infection in this process.  相似文献   
159.
Synovial tissue of rheumatoid arthritis (RA) patients is characterised by an influx and retention of CD97-positive inflammatory cells. The ligands of CD97, CD55, chondroitin sulfate B, and α5β1 (very late antigen [VLA]-5) are expressed abundantly in the synovial tissue predominantly on fibroblast-like synoviocytes, endothelium, and extracellular matrix. Based upon this expression pattern, we hypothesise CD97 expression to result in accumulation of inflammatory cells in the synovial tissue of RA patients. To determine the therapeutic effect of blocking CD97 in an animal model of RA, collagen-induced arthritis was induced in a total of 124 DBA/J1 mice. Treatment was started on day 21 (early disease) or on day 35 (longstanding disease) with the blocking hamster anti-mouse CD97 monoclonal antibody (mAb) 1B2, control hamster immunoglobulin, or NaCl, applied intraperitoneally three times a week. The paws were evaluated for clinical signs of arthritis and, in addition, examined by radiological and histological analysis. Mice receiving 0.5 mg CD97 mAb starting from day 21 had significantly less arthritis activity and hind paw swelling. Furthermore, joint damage and inflammation were reduced and granulocyte infiltration was decreased. When treatment was started on day 35, CD97 mAb treatment had similar effects, albeit less pronounced. The results support the notion that CD97 contributes to synovial inflammation and joint destruction in arthritis.  相似文献   
160.
Arabidopsis thaliana is widely used as a model to study chromatin compaction dynamics during development and in response to the environment. Signals such as prolonged heat treatment, low light and pathogen infestation are known to induce large-scale de-condensation of nuclear chromatin. Here we demonstrate that the response to different environments varies at the nucleosomal level. Our results show that in contrast to previous reports on heat and biotic infestation, low light intensity signaling does not alter nucleosomal occupancy, despite the marked effects of low light on global chromatin compaction.Key words: Arabidopsis, chromatin, nucleosomes, MNase IThanks to its relatively simple chromatin organization, Arabidopsis thaliana became the model of choice to study dynamics in nuclear chromatin compaction in plants.13 At the microscopic level, highly condensed ‘heterochromatic’ domains (chromocenters), containing compact DNA (mainly repetitive sequences), and less condensed gene-rich ‘euchromatic’ domains can be distinguished upon staining with DAPI (4′,6-diamidino-2-phenylindole). This division however, is not static and compaction changes throughout development (reviewed in ref. 4). Chromatin for example de-condensates prior to flowering5 and increases with cell differentiation during leaf maturation3 and seedling establishment.6 Vice versa, artificially induced cell de-differentiation during protoplastization, results in loosening of compact chromatin.7,8 Chromatin compaction is also influenced by various environmental signals. These include infestation by pathogenic microorganisms such as Pseudomonas syringae, light and heat signals.911In our recent paper, published in Plant Physiology,12 we demonstrate that a ∼90% decrease in light intensity (low light) induces a reversible reduction in global chromatin compaction. In addition, also specifically lowering the blue-light wavelengths in the spectrum, or lowering the red-to-far red (R/Fr) ratio induced a significant reduced compaction of the nuclear chromatin. This is interesting from a functional perspective because (1) these are the relevant signals perceived by plants in natural shade conditions occurring in dense-vegetations and (2) because these wavelengths are specifically detected by the light-sensitive photoreceptor proteins. Previously, we demonstrated that the R/Fr-photoreceptor Phytochrome-B (PhyB) is a positive regulator of chromatin compaction in standard light conditions.10 We now showed that PhyB also controls low light-induced chromatin organization, but that its effect depend on the genetic background of the phyb mutant under study. Likely, PhyB exerts its effects on light-mediated chromatin compaction via stabilization of CRYPTOCHROME 2 (CRY2) protein. This chromatin-associated blue light photoreceptor is a general positive regulator of low light-induced chromatin de-compaction and in addition controls chromatin compaction during floral transition.5In addition, we demonstrated that global chromatin de-compaction during floral transition and low light treatment also occurs in euchromatic domains.5,12 To study possible chromatin changes at the nucleosomal level, we performed Micrococcal Nuclease I (MNase I) analysis. No differences were observed in the nucleosomal occupancy between standard and low light conditions in DNA gels or Southern blots hybridized with different probes for repeated sequences associated to heterochromatin, and dispersed upon low light treatment (Fig. 1). This suggests that the large-scale heterochromatin (de)compaction response observed at the microscopic level under low light conditions is not necessarily accompanied by nucleosomal displacement. These results are in line with the de-condensation conditions induced by protoplastization, where no changes in H3K9Me2 or in DNA methylation (5-mC) levels were found.7 However, these results are in contrast to the results of Pecinka and colleagues,11 who demonstrated that prolonged heat stress results in heterochromatin de-condensation and loss of nucleosomes. Moreover, it is in contrast with Pavet and co-workers,9 who found reduced 5-mC levels upon infection with P. syringae. Although the results of Pecinka and colleaugues11 were obtained by real-time PCR which may be more sensitive than our Southern blots, we conclude that the response of plants to their environment at the chromatin compaction level may be tailored to the specific signal it is confronted with and that this probably can be dissected at the nucleosomal level.Open in a separate windowFigure 1MNase I analysis of low light treated plants. Southern blots with 3 different probes hybridized to DNA from Col-0 plants cultured under standard (200 µmol m−2 s−1; control) and low light (15 µmol m−2 s−1) conditions. For each part, the first two lanes represent control DNA samples (no MNase I), followed by lanes with increasing MNase I concentrations (0.02, 0.1, 0.75 and 3 units MNase I). (A) 5S rDNA probe, (B) 45S rDNA probe, (C) pAl1 probe (180 bp centromeric repeat). M = molecular weight marker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号