首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   55篇
  473篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   18篇
  2014年   23篇
  2013年   29篇
  2012年   31篇
  2011年   29篇
  2010年   33篇
  2009年   19篇
  2008年   31篇
  2007年   31篇
  2006年   21篇
  2005年   36篇
  2004年   24篇
  2003年   34篇
  2002年   23篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
191.
192.
Transgenic crops are being adopted rapidly at the global level, but only a few developing countries are growing them in significant quantities. Why are these crops so successful in some countries but not in others? Farm level profitability ultimately determines whether farmers adopt and retain a new technology, but this depends on much more than technical performance. Recent economic studies in developing countries find positive, but highly variable, economic returns to adopting transgenic crops. These studies confirm that institutional factors such as national agricultural research capacity, environmental and food safety regulations, intellectual property rights and agricultural input markets matter at least as much as the technology itself in determining the level and distribution of economic benefits.  相似文献   
193.
V(D)J recombinase mediates rearrangements at immune loci and cryptic recombination signal sequences (cRSS), resulting in a variety of genomic rearrangements in normal lymphocytes and leukemic cells from children and adults. The frequency at which these rearrangements occur and their potential pathologic consequences are developmentally dependent. To gain insight into V(D)J recombinase-mediated events during human development, we investigated 265 coding junctions associated with cRSS sites at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in peripheral T cells from 111 children during the late stages of fetal development through early adolescence. We observed a number of specific V(D)J recombinase processing features that were both age and gender dependent. In particular, TdT-mediated nucleotide insertions varied depending on age and gender, including percentage of coding junctions containing N-nucleotide inserts, predominance of GC nucleotides, and presence of inverted repeats (Pr-nucleotides) at processed coding ends. In addition, the extent of exonucleolytic processing of coding ends was inversely related to age. We also observed a coding-partner-dependent difference in exonucleolytic processing and an age-specific difference in the subtypes of V(D)J-mediated events. We investigated these age- and gender-specific differences with recombination signal information content analysis of the cRSS sites in the human HPRT locus to gain insight into the mechanisms mediating these developmentally specific V(D)J recombinase-mediated rearrangements in humans.  相似文献   
194.
Eukaryotic translation elongation factor 1A (eEF1A) both shuttles aminoacyl-tRNA (aa-tRNA) to the ribosome and binds and bundles actin. A single domain of eEF1A is proposed to bind actin, aa-tRNA and the guanine nucleotide exchange factor eEF1Bα. We show that eEF1Bα has the ability to disrupt eEF1A-induced actin organization. Mutational analysis of eEF1Bα F163, which binds in this domain, demonstrates effects on growth, eEF1A binding, nucleotide exchange activity, and cell morphology. These phenotypes can be partially restored by an intragenic W130A mutation. Furthermore, the combination of F163A with the lethal K205A mutation restores viability by drastically reducing eEF1Bα affinity for eEF1A. This also results in a consistent increase in actin bundling and partially corrected morphology. The consequences of the overlapping functions in this eEF1A domain and its unique differences from the bacterial homologs provide a novel function for eEF1Bα to balance the dual roles in actin bundling and protein synthesis.The final step of gene expression takes place at the ribosome as mRNA is translated into protein. In the yeast Saccharomyces cerevisiae, elongation of the polypeptide chain requires the orchestrated action of three soluble factors. The eukaryotic elongation factor 1 (eEF1)2 complex delivers aminoacyl-tRNA (aa-tRNA) to the empty A-site of the elongating ribosome (1). The eEF1A subunit is a classic G-protein that acts as a “molecular switch” for the active and inactive states based on whether GTP or GDP is bound, respectively (2). Once an anticodon-codon match occurs, the ribosome acts as a GTPase-activating factor to stimulate GTP hydrolysis resulting in the release of inactive GDP-bound eEF1A from the ribosome. Because the intrinsic rate of GDP release from eEF1A is extremely slow (3, 4), a guanine nucleotide exchange factor (GEF) complex, eEF1B, is required (5, 6). The yeast S. cerevisiae eEF1B complex contains two subunits, the essential catalytic subunit eEF1Bα (5) and the non-essential subunit eEF1Bγ (7).The co-crystal structures of eEF1A:eEF1Bα C terminus:GDP: Mg2+ and eEF1A:eEF1Bα C terminus:GDPNP (8, 9) demonstrated a surprising structural divergence from the bacterial EF-Tu-EF-Ts (10) and mammalian mitochondrial EF-Tumt-EF-Tsmt (11). While the G-proteins have a similar topology and consist of three well-defined domains, a striking difference was observed in binding sites for their GEFs. The C terminus of eEF1Bα interacts with domain I and a distinct pocket of domain II eEF1A, creating two binding interfaces. In contrast, the bacterial counterpart EF-Ts and mammalian mitochondrial EF-Tsmt, make extensive contacts with domain I and III of EF-Tu and EF-Tumt, respectively. The altered binding interface of eEF1Bα to domain II of eEF1A is particularly unexpected given the functions associated with domain II of eEF1A and EF-Tu. The crystal structure of the EF-Tu:GDPNP:Phe-tRNAPhe complex reveals aa-tRNA binding to EF-Tu requires only minor parts of both domain II and tRNA to sustain stable contacts (12). That eEF1A employs the same aa-tRNA binding site is supported by genetic and biochemical data (13-15). Interestingly, eEF1Bα contacts many domain II eEF1A residues in the region hypothesized to be involved in the binding of the aa-tRNA CCA end (8). Because, the shared binding site of eEF1Bα and aa-tRNA on domain II of eEF1A is significantly different between the eukaryotic and bacterial/mitochondrial systems, eEF1Bα may play a unique function aside from guanine nucleotide release in eukaryotes.In eukaroytes, eEF1A is also an actin-binding and -bundling protein. This noncanonical function of eEF1A was initially observed in Dictyostelium amoebae (16). It is estimated that greater than 60% of Dictyostelium eEF1A is associated with the actin cytoskeleton (17). The eEF1A-actin interaction is conserved among species from yeast to mammals, suggesting the importance of eEF1A for cytoskeleton integrity. Using a unique genetic approach, multiple eEF1A mutations were identified that altered cell growth and morphology, and are deficient in bundling actin in vitro (18, 19). Intriguingly, most mutations localized to domain II, the shared aa-tRNA and eEF1Bα binding site. Previous studies have demonstrated that actin bundling by eEF1A is significantly reduced in the presence of aa-tRNA while eEF1A bound to actin filaments is not in complex with aa-tRNA (20). Therefore, actin and aa-tRNA binding to eEF1A is mutually exclusive. In addition, overexpression of yeast eEF1A or actin-bundling deficient mutants do not affect translation elongation (18, 19, 21), suggesting eEF1A-dependent cytoskeletal organization is independent of its translation elongation function (18, 20). Thus, while aa-tRNA binding to domain II is conserved between EF-Tu and eEF1A, this actin bundling function associated with eEF1A domain II places greater importance on its relationship with the “novel” binding interface between eEF1A domain II and eEF1Bα.Based on this support for an overlapping actin bundling and eEF1Bα binding site in eEF1A domain II, we hypothesize that eEF1Bα modulates the equilibrium between actin and translation functions of eEF1A and is perhaps the result of evolutionary selective pressure to balance the eukaryotic-specific role of eEF1A in actin organization. Here, we present kinetic and biochemical evidence using a F163A mutant of eEF1Bα for the importance of the interactions between domain II of eEF1A and eEF1Bα to prevent eEF1A-dependent actin bundling as well as promoting guanine nucleotide exchange. Furthermore, altered affinities of eEF1Bα mutants for eEF1A support that this complex formation is a determining factor for eEF1A-induced actin organization. Interestingly, the F163A that reduces eEF1A affinity is an intragenic suppressor of the lethal K205A eEF1Bα mutant that displays increased affinity for eEF1A. This, along with a consistent change in the actin bundling correlated with the affinity of eEF1Bα for eEF1A, indicates that eEF1Bα is a balancer, directing eEF1A to translation elongation and away from actin, and alterations in this balance result in detrimental effects on cell growth and eEF1A function.  相似文献   
195.
Common variation in over 100 genes has been implicated in the risk of developing asthma, but the contribution of rare variants to asthma susceptibility remains largely unexplored. We selected nine genes that showed the strongest signatures of weak purifying selection from among 53 candidate asthma-associated genes, and we sequenced the coding exons and flanking noncoding regions in 450 asthmatic cases and 515 nonasthmatic controls. We observed an overall excess of p values <0.05 (p = 0.02), and rare variants in four genes (AGT, DPP10, IKBKAP, and IL12RB1) contributed to asthma susceptibility among African Americans. Rare variants in IL12RB1 were also associated with asthma susceptibility among European Americans, despite the fact that the majority of rare variants in IL12RB1 were specific to either one of the populations. The combined evidence of association with rare noncoding variants in IL12RB1 remained significant (p = 3.7 × 10(-4)) after correcting for multiple testing. Overall, the contribution of rare variants to asthma susceptibility was predominantly due to noncoding variants in sequences flanking the exons, although nonsynonymous rare variants in DPP10 and in IL12RB1 were associated with asthma in African Americans and European Americans, respectively. This study provides evidence that rare variants contribute to asthma susceptibility. Additional studies are required for testing whether prioritizing genes for resequencing on the basis of signatures of purifying selection is an efficient means of identifying novel rare variants that contribute to complex disease.  相似文献   
196.
Diatom-based indicators were developed to assess environmental conditions in the Missouri, Ohio, and Upper Mississippi rivers. Disturbance gradients, comprising the first two principal components derived from a suite of stressor variables, included a trophic gradient (Trophic) and a gradient reflecting agriculture and other development activities (Ag/Dev). Diatom-based indicators were developed by creating models using weighted average calibration and regression-based transfer functions to relate planktonic and periphytic diatom species assemblages to each disturbance gradient. The most predictive disturbance models combined phytoplankton and periphyton assemblages into a single bioindicator model (observed versus inferred: Trophic $ r_{\text{boot}}^{2} = 0. 5 6 $ ; Ag/Dev $ r_{\text{boot}}^{2} = 0. 7 0 $ ). The geographic applicability of bioindicators was assessed by limiting sample geographical range during model calibrations. Geographic scale was limited by creating bioindicators using samples from: (a) each river, and (b) combined Mississippi/Missouri samples excluding Ohio River sites which were chemically unique. Indicator performance decreased with geographically restrictive models, therefore river basin-wide models, developed across all three rivers, is recommended. The most effective diatom-based disturbance bioindicators for this great river ecosystem could be applied using phytoplankton, periphyton, or combined assemblages to infer both trophic and agriculture/development disturbances.  相似文献   
197.
BACKGROUND: This work evaluates pregnancy and infant loss in 1,069 vehicle‐treated cynomolgus monkeys from 78 embryo‐fetal development (EFD) studies and 14 pre‐postnatal development (PPND) studies accrued during 1981–2007. METHODS: Losses were analysed by survival function and hazard ratio using logistic regression for influence of year, study type (e.g., dose duration), and test item route of administration (ig, im, iv, sc). RESULTS: Neither study type nor route of dosing affected pregnancy outcome. Losses were higher pre‐1990 (104 losses/347 pregnancies) compared to 1990 onwards (94 losses/722 pregnancies). Losses were greatest before gestation day 50 and at parturition. Using post‐1989 data, Monte‐Carlo simulations of pregnancy outcomes were created. The power associated with the comparison of vehicle survival curves and simulated adverse survival curves was examined. This showed that EFD studies with initial vehicle group sizes of 16 and 20 have an 80% probability of having 13 and 16 ongoing pregnancies at gestational day 100, respectively. For PPND studies with initial vehicle group sizes of 16, 20, or 28, there is an 80% likelihood of having 9, 11, or 16 infants at day 7 post‐partum, respectively. A PPND study initiated with group size 20 could detect a threefold increase of test item–related pregnancy or infant loss. CONCLUSIONS: For designing and managing primate developmental toxicity studies, this type of analysis provides an objective tool to facilitate decisions either by supplementing groups with additional pregnant animals or stopping a group because an adverse effect on offspring survival has already been adequately revealed. Birth Defects Res (Part B) 89:175–187, 2010.© 2010 Wiley‐Liss, Inc.  相似文献   
198.
Connective tissue growth factor (CTGF), also known as CCN2, is implicated in fibrosis through both extracellular matrix (ECM) induction and inhibition of ECM degradation. The role of CTGF in inflammation in cardiomyocytes is unknown. In some mesenchymal cell systems, CTGF mediates effects through TGF-β or tyrosine kinase cell surface receptor, TrkA, signalling. In this study, cellular mechanisms by which CTGF regulates pathways involved in fibrosis and inflammation were explored. Murine H9c2 cardiomyocytes were treated with recombinant human (rh)CTGF and ECM formation gene expression: fibronectin, collagen type -I and -III and ECM degradation genes: TIMP-1, TIMP-2 and PAI-1 were found to be induced. CTGF treatment also increased pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-8. CTGF upregulated TGF-β1 mRNA and rapidly induced phosphorylation of TrkA. The CTGF-induced pro-fibrotic and pro-inflammatory effects were blocked by anti-TGF-β neutralizing antibody and Alk 5 inhibitor (SB431542). A specific blocker of TrkA activation, k252a, also abrogated CTGF-induced effects on fibrosis and gene expresison of MCP-1 and IL-8, but not TNF-α or IL-6. Collectively, this data implicates CTGF in effects on pro-fibrotic genes and pro-inflammatory genes via TGF-β pathway signalling and partly through TrkA.  相似文献   
199.

Background

Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.

Methodology/Principal Findings

We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin−/− mice likely arise as a consequence of nutritional stress.

Conclusions/Significance

We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin.  相似文献   
200.
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号