首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   9篇
  121篇
  2021年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   5篇
  1971年   4篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1966年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
51.
A method has been developed for the separation of leucine, 2-ketoisocaproic acid, isovaleryl CoA, 3-methylcrotonyl CoA, 3-hydroxy-3-methylglutaryl CoA, 3-methylglutaconyl CoA, acetyl CoA, and acetoacetic acid by ion-exchange high-performance liquid chromatography. The analysis requires 180 min. Use of this method to assess the catabolism of radiolabeled leucine in normal cultured human skin fibroblasts shows that these cells do not accumulate CoA esters, but convert leucine mainly to 2-ketoisocaproic acid, glutamate, and hydroxyisovalerate. In the fibroblasts of a patient with maple syrup urine disease, only 2-ketoiscaproic acid is produced from leucine.  相似文献   
52.
Zanaboni, Paul, Paul A. Murray, Brett A. Simon, Kenton Zehr,Kirk Fleischer, Elaine Tseng, and Daniel P. Nyhan. Selective endothelial dysfunction in conscious dogs after cardiopulmonary bypass.J. Appl. Physiol. 82(6):1776-1784, 1997.It has previously been demonstrated thatcardiopulmonary bypass (CPB) causes prolonged pulmonary vascularhyperreactivity (D. P. Nyhan, J. M. Redmond, A. M. Gillinov, K. Nishiwaki, and P. A. Murray. J. Appl.Physiol. 77: 1584-1590, 1994). Thisstudy investigated the effects of CPB on endothelium-dependent(acetylcholine and bradykinin) and endothelium-independent (sodiumnitroprusside) pulmonary vasodilation in conscious dogs. Continuousleft pulmonary vascular pressure-flow (LP-) plots were generated in conscious dogs before CPB and again in the same animals 3-4 days post-CPB. The dose of U-46619 used to acutely preconstrict the pulmonary circulation to similar levels pre- andpost-CPB was decreased (0.13 ± 0.01 vs. 0.10 ± 0.01 mg · kg1 · min1,P < 0.01) after CPB. Acetylcholine,bradykinin, and sodium nitroprusside all caused dose-dependentpulmonary vasodilation pre-CPB. The pulmonary vasodilator response toacetylcholine was completely abolished post-CPB. For example, at leftpulmonary blood flow of 80 ml · kg1 · min1acetylcholine (10 µg · kg1 · min1)resulted in 72 ± 15% reversal (P < 0.01) of U-46619 preconstriction pre-CPB but caused no changepost-CPB. However, the responses to bradykinin and sodium nitroprussidewere unchanged post-CPB. The impaired pulmonary vasodilator response toacetylcholine, but not to bradykinin, suggests a selective endothelialdefect post-CPB. The normal response to sodium nitroprusside indicates that cGMP-mediated vasodilation is unchanged post-CPB.

  相似文献   
53.
We investigated the effects of an intravenous (pentobarbital sodium) and inhalational (halothane) general anesthetic on the pulmonary vascular responses to angiotensin II and angiotensin-converting enzyme inhibition (CEI). Multipoint pulmonary vascular pressure-flow (P/Q) plots were generated in conscious pentobarbital- (30 mg/kg iv) and halothane-anesthetized (approximately 1.2% end-tidal) dogs in the intact (no drug) condition, during angiotensin II administration (60 ng.kg-1.min-1 iv), and during CEI (captopril 1 mg/kg plus 1 mg.kg-1.h-1 iv). In conscious dogs, angiotensin II increased (P less than 0.001) the pulmonary vascular pressure gradient [pulmonary arterial pressure--pulmonary arterial wedge pressure (PAP-PAWP)] over the empirically measured range of Q; i.e., angiotensin II caused pulmonary vasoconstriction. Pulmonary vasoconstriction (P less than 0.01) in response to angiotensin II was also observed during pentobarbital sodium anesthesia. In contrast, angiotensin II had no effect on the P/Q relationship during halothane anesthesia. In conscious dogs, CEI decreased (P less than 0.001) PAP-PAWP over the empirically measured range of Q; i.e., CEI caused pulmonary vasodilation. However, CEI caused pulmonary vasoconstriction (P less than 0.02) during pentobarbital sodium and had no effect on the P/Q relationship during halothane. Thus, compared with the conscious state, the pulmonary vasoconstrictor response to angiotensin II is unchanged or abolished, and the pulmonary vasodilator response to CEI is reversed to vasoconstriction or abolished during pentobarbital sodium and halothane anesthesia, respectively.  相似文献   
54.
55.
56.
57.
58.
59.
60.
The multifunctional enzyme tissue transglutaminase (TG2) contributes to the development and progression of several cardiovascular diseases. Extracellular rather than intracellular TG2 is enzymatically active, however, the mechanism by which it is exported out of the cell remains unknown. Nitric oxide (NO) is shown to constrain TG2 externalization in endothelial and fibroblast cells. Here, we examined the role of both exogenous and endogenous (endothelial cell-derived) NO in regulating TG2 localization in vascular cells and tissue. NO synthase inhibition in endothelial cells (ECs) using N-nitro l-arginine methyl ester (l-NAME) led to a time-dependent decrease in S-nitrosation and increase in externalization of TG2. Laminar shear stress led to decreased extracellular TG2 in ECs. S-nitrosoglutathione treatment led to decreased activity and externalization of TG2 in human aortic smooth muscle and fibroblast (IMR90) cells. Co-culture of these cells with ECs resulted in increased S-nitrosation and decreased externalization and activity of TG2, which was reversed by l-NAME. Aged Fischer 344 rats had higher tissue scaffold-associated TG2 compared to young. NO regulates intracellular versus extracellular TG2 localization in vascular cells and tissue, likely via S-nitrosation. This in part, explains increased TG2 externalization and activity in aging aorta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号